TOPOLOGICAL INDICES OF SOME GRAPH PRODUCTS

A. SUMATHI
Department of Mathematics
Seethalakshmi Ramaswami College
Tiruchirappalli-2, India
E-mail: suma_shivasrc@yahoo.com

Abstract

A topological index is a numeric value derived from the structural graph of a molecule. Role of topological indices in chemistry began in 1947 when chemist Harold Wiener developed the most widely known topological descriptor, the Wiener index. In this paper, Wiener Polarity index, Harary Index, Estrada Index, Harary Estrada index, First Zagreb index of some graph products (Strong, Tensor) of P_{m} and P_{n}, P_{m} and C_{n}, C_{m} and C_{n} through Adjacency matrix are given.

I. Introduction

Our notation is standard and taken from the standard book of Graph theory [1]. Consider G is simple, connected graph with vertex set V and edge set E. If G is a molecular graph with n vertices, then its adjacency matrix $A_{i j}$ is a square matrix of order n defined as $a_{i j}=1$, if there is an edge between $i^{\text {th }}$ and $j^{\text {th }}$ vertices, $a_{i j}=0$, if there is no edge between them. The Wiener index $W(G)$ of a connected graph G is defined as the sum of the distances between all pairs (ordered) of vertices of G [22]. Another important molecular descriptor was also introduced by Wiener [22], called the Wiener polarity index $W p(G)$. It is defined as the number of unordered pairs of vertices that are at distance 3 in G. The Harary index is introduced by Plavsic et al., [7, 16]. It defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. Energy of the molecular graph G is defined by
$E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigen values of G. The Estrada index is defined as $E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigen values of G [8]. Harary matrix of a graph G is defined as a square matrix $H=H(G)=\left[\frac{1}{d(i, j)}\right]$, where $d(i, j)$ is the distance between the vertices v_{i} and v_{j} in G. The eigenvalues of the Harary matrix $H(G)$ are denoted by $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ and are said to be the H -eigenvalues of G. Harary Energy of the molecular graph G is defined by $E(G)=\sum_{v \in G}^{n}\left|\rho_{i}\right|$, where $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ be the H-eigen values of G. Harary Estrada index of G, denoted by $\operatorname{HEE}(G)$, where $\operatorname{HEE}(G)=\sum_{v \in G}^{n} e^{\rho_{i}}$, where $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$, be the H eigen values of G [2]. The first Zagreb index of G is defined as $M_{1}=\sum_{v \in G} d(v)^{2}[3,4]$. Wiener index of any graph through adjacency matrix using MATAB given in [19]. And also Wiener index of Harary graph through adjacency matrix using MATAB given in [18]. In particular, Wiener index of graph product and some nanostructures calculated through adjacency matrix using MATLAB given in [20, 21]. In this paper, to overcome time complexity MATLAB program is used for finding some topological indices through adjacency matrix of two standard graph products (Tensor, Strong) of path and path, path and cycle, cycle and cycle. In [5, 6], Imrich and Izbickihave discussed about the product graphs in detail. The symbols used to denote products are based mainly on those found in [5, 6, 10]. The above topological indices of the product graphs was much studied in $[5,6,17]$.

II. Graph Product

Definition 2.1 Strong Product [12, 15]. Strong product $G \boxtimes H$ of graphs G and H is a graph such that the vertex set of $G \boxtimes H$ is the Cartesian product $V(G) \times V(H)$ and any two distinct vertices (u, u^{\prime}) and ($\left.v, v^{\prime}\right)$ are adjacent in $G \boxtimes H$ if and only if u is adjacent to v and $u^{\prime}=v^{\prime}$, or $u=v$ and u^{\prime} is adjacent to v^{\prime}, or u is adjacent to v and u^{\prime} is adjacent to v^{\prime}. The strong product is also called the normal product and product.

Definition 2.2. Tensor Product [9, 11]. Tensor product $G \times H$ of graphs G and H is a graph such that the vertex set of $G \times H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent in $G \times H$ if and only if u^{\prime} is adjacent with v^{\prime} and u is adjacent with v. The tensor product is also called as the direct product, categorical product, cardinal product, relational product, Kronecker product, weak direct product, or conjunction.

An Algorithm for Computing the Topological Index of Some Product Graphs

Let G, H be two connected graphs, whose vertex set are V_{1} and V_{2} respectively, where $\left|V_{1}\right|=m,\left|V_{2}\right|=n$. then the product of G and H has $m n$ vertices. In this section, we present an algorithm for obtaining some topological indices of $P_{m} \boxtimes P_{n}, P_{m} \boxtimes C_{n}, C_{m} \boxtimes C_{n}, P_{m} \times P_{n}, P_{m} \times C_{n}, C_{m} \times C_{n}$

1. Input number of vertices of G and number of vertices of H
2. Label the vertices of the product graph by the set of natural numbers $\{1,2, \ldots, m n\}$ in some manner (*)
3. Frame the Generalized Adjacency matrix of the given product graph.
*-For Strong product of two graphs G and H, label the vertices as $1,2, \ldots, m$ in the First row and the vertices $m+1, \ldots, 2 m$ in the second row. In the similar manner, vertices $(n-1) m+1 \ldots m n$ in the nth row. (refer Figure 1).

III. Strong Product

In this Section, the program is given for finding adjacency matrix of Strong product of P_{m} and P_{n}, P_{m} and C_{n}, C_{m} and C_{n} for arbitrary m, n. Since this product is commutative.

3.1. Strong Product of P_{m} and P_{n}

Figure 1. $P_{4} \boxtimes P_{3}$.
\% Program to calculate the adjacency matrix of $P_{m} \boxtimes P_{n}$
$\mathrm{m}=$ input('Path with vertices $\mathrm{m}=$ ');
$\mathrm{n}=$ input('Path with vertices $\mathrm{n}=$ ');
$\mathrm{A}=[]$;
for $\mathrm{i}=1:(\mathrm{n} * \mathrm{~m})-\mathrm{m}$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m})=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i})=1$;
end
while $\mathrm{i}<=(\mathrm{m} * \mathrm{n})-1$
for $\mathrm{i}=1:(\mathrm{m} * \mathrm{n})-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1 ; \mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
if $\operatorname{rem}(i, m)==0$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=0 ; \mathrm{A}(\mathrm{i}+1, \mathrm{i})=0$;
end
end
$\mathrm{i}=\mathrm{i}+1$;
end
for $\mathrm{i}=1: \mathrm{n}$ *m
while $\mathrm{i}<=(\mathrm{n} * \mathrm{~m})-\mathrm{m}-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m}+1)=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}+1, \mathrm{i})=1$;

```
if rem(i,m)==0
A(i,i+m+1)=0;A(i+m+1,i)=0;
end
    i=i+1;
end
end
for i=1:n*m
while i<=(n*m)-m
A(i+1,i+m)=1;A(i+m,i+1)=1;
if rem(i,m)==0&&m==2
A(i+1,i+m)=1;A(i+m,i+1)=1;
elseif rem(i,m)==0&&m>2
A(i+1,i+m)=0;A(i+m,i+1)=0;
end
    i=i+1;
end
end
A;
3.2. Strong Product of }\mp@subsup{P}{m}{}\mathrm{ and }\mp@subsup{C}{n}{
% Program to calculate the adjacency matrix of }\mp@subsup{P}{m}{}\boxtimes\mp@subsup{C}{n}{
m= input('Path with vertices m=');
n= input('Cycle with vertices n=');
A=[];
for i=1:(n*m)-m
A(i,i+m)=1;A(i+m,i)=1;
```

end
while $\mathrm{i}<=(\mathrm{m} * \mathrm{n})-1$
for $i=1:(m * n)-1$
$A(i, i+1)=1 ; A(i+1, i)=1 ;$
if $\operatorname{rem}(i, m)==0$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=0 ; \mathrm{A}(\mathrm{i}+1, \mathrm{i})=0$;
end
end
$i=i+1 ;$
end
for $\mathrm{i}=1: \mathrm{n}^{*} \mathrm{~m}$
while $\mathrm{i}<=(\mathrm{n} * \mathrm{~m})-\mathrm{m}-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m}+1)=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}+1, \mathrm{i})=1 ;$
if $\operatorname{rem}(i, m)==0$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m}+1)=0 ; \mathrm{A}(\mathrm{i}+\mathrm{m}+1, \mathrm{i})=0 ;$
end
$i=i+1 ;$
end
end
for $\mathrm{i}=1: \mathrm{n}$ * m
while $\mathrm{i}<=(\mathrm{n} * \mathrm{~m})-\mathrm{m}$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i}+\mathrm{m})=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i}+1)=1$;
if $\operatorname{rem}(i, m)==0 \& \& m==2$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i}+\mathrm{m})=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i}+1)=1$;
elseif $\operatorname{rem}(i, m)==0 \& \& m>2$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i}+\mathrm{m})=0 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i}+1)=0 ;$
end

$$
\mathrm{i}=\mathrm{i}+1
$$

end
end
for $\mathrm{i}=1$:m
$\mathrm{A}(\mathrm{i}, \mathrm{i}+(\mathrm{m} *(\mathrm{n}-1)))=1 ; \mathrm{A}\left(\mathrm{i}+\left(\mathrm{m}^{*}(\mathrm{n}-1)\right), \mathrm{i}\right)=1 ;$
end
for $\mathrm{i}=1: \mathrm{m}-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+(\mathrm{m} *(\mathrm{n}-1))+1)=1 ; \mathrm{A}(\mathrm{i}+(\mathrm{m} *(\mathrm{n}-1))+1, \mathrm{i})=1 ;$
end
for $\mathrm{i}=1: \mathrm{m}-1$
$A\left(i+1, i+\left(m^{*}(n-1)\right)\right)=1 ; A(i+(m *(n-1)), i+1)=1 ;$
end
A;

3.3. Strong Product of C_{m} and C_{n}

\% Program to calculate the adjacency matrix of $C_{m} \boxtimes C_{n}$
$\mathrm{m}=$ input('Cycle with vertices $\mathrm{m}=$ ');
$\mathrm{n}=$ input('Cycle with vertices $\mathrm{n}=$ ');
$A=[] ;$
for $\mathrm{i}=1:(\mathrm{n} * \mathrm{~m})-\mathrm{m}$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m})=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i})=1 ;$
end
while $\mathrm{i}<=(\mathrm{m} * \mathrm{n})-1$
for $\mathrm{i}=1:(\mathrm{m} * \mathrm{n})-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1 ; \mathrm{A}(\mathrm{i}+1, \mathrm{i})=1 ;$
if $\operatorname{rem}(i, m)==0$

```
A(i,i+1)=0;A(i+1,i)=0;
```

end
end
$i=i+1$;
end
for $\mathrm{i}=1$: n *m
while $\mathrm{i}<=(\mathrm{n} * \mathrm{~m})-\mathrm{m}-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m}+1)=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}+1, \mathrm{i})=1 ;$
if $\operatorname{rem}(i, m)==0$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{m}+1)=0 ; \mathrm{A}(\mathrm{i}+\mathrm{m}+1, \mathrm{i})=0 ;$
end

$$
i=i+1
$$

end
end
for $i=1: n * m$
while $\mathrm{i}<=(\mathrm{n} * \mathrm{~m})-\mathrm{m}$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i}+\mathrm{m})=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i}+1)=1$;
if $\operatorname{rem}(i, m)==0 \& \& m==2$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i}+\mathrm{m})=1 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i}+1)=1$;
elseif $\operatorname{rem}(i, m)==0 \& \& m>2$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i}+\mathrm{m})=0 ; \mathrm{A}(\mathrm{i}+\mathrm{m}, \mathrm{i}+1)=0 ;$
end

$$
i=i+1
$$

end
end

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022

```
for i=1:m
A(i,i+(m*(n-1)))=1;A(i+(m*(n-1)),i)=1;
A(1,(m*n))=1;A((m*n),1)=1;
A((m*n)-m+1,m)=1;A(m,(m*n)-m+1)=1;
end
for i=1:m-1
    A(i,i+(m*(n-1))+1)=1;A(i+(m*(n-1))+1,i)=1;
end
for i= 1:m-1
A(i+1,i+(m*(n-1)))=1;A(i+(m*(n-1)),i+1)=1;
end
for i=1:m:(m*n)-m+1
A(i,i+m-1)=1;A(i+m-1,i)=1;
end
for i=1:m:(m*(n-2)+1)
A(i,i+(2*m-1))=1;A(i+(2*m-1),i)=1;
end
for i=m:m:(m*n-m)
A(i,i+1)=1;A(i+1,i)=1;
end
A;
```


IV. Tensor Product

4.1. Tensor Product of P_{m} and P_{n}

```
Tensor Product of \(P_{m}\) and \(P_{n}\) is disconnected. Since \(G \times H\) is connected if and only if both \(G\) and \(H\) are connected and at least one of them is nonbipartite. Furthermore, if both \(G\) and \(H\) are connected and bipartite, then
```

$G \times H$ has exactly two connected components. [11]

4.2. Tensor Product of P_{m} and C_{n} [14]

The following program illustrate Adjacency matrix of Tensor Product of P_{m} and C_{n} when m and n are odd or m is even and n is odd.
\% Program to calculate the adjacency matrix of $P_{m} \times C_{n}$
$\mathrm{m}=$ input('Path with vertices $\mathrm{m}=$ ');
$\mathrm{n}=$ input('Cycle with vertices $\mathrm{n}=$ ');
$\mathrm{A}=[]$;
for $\mathrm{i}=1: \mathrm{m}-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1 ; \mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
end
$B=[]$;
for $\mathrm{j}=1: \mathrm{n}-1$
$\mathrm{B}(\mathrm{j}, \mathrm{j}+1)=1 ; \mathrm{B}(\mathrm{j}+1, \mathrm{j})=1$;
$\mathrm{B}(1, \mathrm{n})=1 ; \mathrm{B}(\mathrm{n}, 1)=1$;
end
$\mathrm{C}=\operatorname{kron}(\mathrm{A}, \mathrm{B})$;

4.3. Tensor Product of C_{m} and C_{n} [13]

The following program illustrate Adjacency matrix of Tensor Product of P_{m} and C_{n} when m and n are odd, m is even and n is odd, m is odd and n is odd. Since, Tensor Product of C_{m} and C_{n} is disconnected, when m and n are even

```
% Program to calculate the adjacency matrix of Cm}\times\mp@subsup{C}{n}{
    m= input('Cycle with vertices m=');
    n= input('Cycle with vertices n=');
    A=[];
```

```
for i=1:m-1
A(i,i+1)=1;A(i+1,i)=1;
A}(1,\textrm{m})=1;\textrm{A}(\textrm{m},1)=1
end
B=[];
for j=1:n-1
B(j,j+1)=1;B(j+1,j)=1;
B}(1,\textrm{n})=1;\textrm{B}(\textrm{n},1)=1
end
C = kron(A,B);
```


V. Illustration

The following table represents Topological indices of standard graph product for arbitrary m, n.

Table 1. Topological indices of graph Products.

S.No.	Graph Product	m	n	Wiener polarit y index	Harary index	Estrada index	Harary Estrada index	First Zagreb index
1.	$P_{m} \boxtimes P_{n}$	31	42	13707	191.1717	100394.9546	24524.8789	19964
2.	$P_{m} \boxtimes C_{n}$	50	50	28650	174.9603	206788.8866	1486.4978	39400
3.	$C_{m} \boxtimes C_{n}$	27	29	9396	101.5841	67312.3819	1328.7815	12528
4.	$P_{m} \times C_{n}$	45	25	6400	38.7901	101.0987	49.4216	176
5.	$C_{m} \times C_{n}$	20	15	1800	19.4464	45.5917	27.2177	80

VI. Execution of the Program

The following is the execution of Strong product of P_{50} and C_{50} in the command window

VII. Conclusion

According to MATLAB program, the topological indices of the standard products of well-known graphs can be computed quickly. The MATLAB program is tested to calculate the above topological indices of two standard products for arbitrary m, n.

References

[1] R. Balakrishnan and K. Renganathan, A Text book of graph theory, Springer-Verlag, New York, (2000).
[2] A. Dilek Gungor and A. Sinan Cevik, On the Harary Energy and Harary Estrada Index of a Graph, MATCH Commun. Math. Comput. Chem. 64 281-296, ISSN 0340-6253, (2010).
[3] I. Gutman, B. RusÏčić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405.
[4] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total п-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17(4) (1972), 535-538.
[5] W. Imrich and H. Izbicki, Associative Products of Graphs, Monatsheftefur, Mathematik 80 (1975), 277-281.
[6] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley, New York, (2000).

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022
[7] O. Ivanciuc, T. S. Balaban and A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993), 309-318.
[8] Jose Antonio de la Pena, Ivan Gutman, Juan Rada, Estimating the Estrada index, Linear Algebra and its Applications 427(1) (2007), 70-76.
[9] I. H. Naga Raja Rao and K. V. S. Sarma, On Tensor Product of Standard Graphs, International Journal of Computational Cognition 8(3) (2010).
[10] J. NeĹĄetĹil and V. RĂśdl, Products of graphs and their applications, Proceedings of the Kuratowski Conference, Lecture notes in Mathematics, Springer, 1018 151-160.
[11] K. Pattabiraman and P. Paulraja, On some topological indices of the tensor products of graphs, Discrete Appl. Math. 160 (2012), 267-279.
[12] K. Pattabiraman and P. Paulraja Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32 (2012), 749-769.
[13] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of cycles Discussiones Mathematicae Graph Theory 31(4) (2011), 737-751.
[14] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of a path and a cycle Discussiones Mathematicae, Graph Theory 31 (2011), 737-751.
[15] K. Pattabiraman, Exact Wiener indices of the strong product of graphs, Journal of Prime Research in Mathematics 9 (2013), 18-33.
[16] D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993), 235-250.
[17] Richard J. Nowakowski and Douglas F. Rall, Associative graph products and their Independence, Domination and Coloring Numbers, Discussiones Mathematicae, Graph Theory 16 (1996), 53-79.
[18] A. Sumathi, Wiener index of a Harary graph using MATLAB International Journal of Advances in Arts, Sciences and Engineering, ISSN: 2320-6136 (Print) 4(8) (2016), 114117.
[19] K. Thilakam and A. Sumathi, How to Compute the Wiener index of a graph using MATLAB, International Journal of Applied Mathematics and Statistical Sciences ISSN: 2319-3972; 2(5) (2013), 143-148.
[20] K. Thilakam and A. Sumathi, Wiener Index of graph product using MATLAB, Jamal Academic Research Journal, ISSN.0973-0303, (2015), 494-501.
[21] K. Thilakam and A. Sumathi, Wiener index of some nanostructures by MATLAB, Journal of Mathematical and Computational Science ISSN.1927-5307; 5(1) (2015), 42-49.
[22] H. Wiener, Structural determination of paraffin boiling points-J. Am chem. Soc. 6 (1947), 17-20.

