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Abstract 

The main aim of this study is to present analysis of a generalized fractional Hirota-

Satsuma coupled KdV system. The fractional derivatives are described in terms of Caputo-

Fabrizio sense. Picard successive approximation technique and Banach’s fixed point theory have 

been used for verification of existence and stability criteria. The approximate solutions of the 

problem in the form of rapidly convergent series are computed using iterative Laplace transform 

technique with easily calculable components using Mathematica. Reliability of the proposed 

method and Caputo-Fabrizio is given by comparison with other method in the literature. 

Further, we show graphical illustration for some values of the fractional order in order to show 

the effectiveness of the proposed method. 

1. Introduction 

As is well known, researchers have recognized that the fractional calculus 

can provide more flexible descriptions than the counterpart of integer-order 

for the real-world phenomena arising in various fields of science and 

engineering. Differential equations of fractional order are the center of 

attention of many studies due to their usefulness in the areas of chaos theory 

[3], physics, material science, electrochemistry, acoustics, viscoelasticity, 
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mechanics, electromagnetic, signal and image processing, reaction pro-cesses, 

[25, 24, 23, 20] biomathematics [4], financial models [35] . Due to the compli-

cated nature of fractional calculus, most of the fractional order differential 

equations do not have the exact solutions, hence considerable focus is to get 

approximate solutions of these equations. Some of the recent methods for 

approximate solutions of these equations are the Adomian decomposition 

method [2, 7], Homotopy analy-sis method [21, 18], Variational iteration 

method [13], Differential transform method [27], Iterative Laplace transform 

method [28], Homotopy-perturbation method [14], Fractional complex 

transform [31, 32], Finite-difference method [36], the (G'/G)- expansion 

method [39]. Since fractional calculus was put forward in the seventeenth 

century, there have appeared several definitions of fractional derivatives: 

Riemann- Liouville, Caputo, Hadamard, Grunwald-Letnikov etc. [5]. To unify 

these fractional derivatives, some generalized fractional operators such as 

Hilfer fractional operator [15], Katugampola fractional operator [17], and 

Atangana-Baleanu fractional operator [1, 9], Caputo-Fabrizio operator [29, 

10, 33] etc. were presented. 

In 1981, R. Hirota and J. Satsuma introduced a coupled Korteweg-de 

Vries (KdV) equation known as the Hirota-Satsuma coupled KdV system to 

eaxmine an interaction of two long waves with diverse dispersion relations. 

In recent times, many researchers have devoted considerable efforts by 

successfully implementing various techniques to extract solitary wave 

solutions and other solutions of Hirota-Satsuma coupled KdV systems. In [11] 

Fan obtained Soliton solution for a generalized Hirota-Satsuma cou-pled KdV 

equation. Exact travelling wave solutions are presented in [19] by Khater et 

al. Solution of time- fractional generalized Hirota-Satsuma coupled KdV 

equa-tion is obtained in [22]. An Efficient Computational Technique for 

Fractional Model of Generalized HirotaSatsuma-Coupled Kortewegde Vries 

and Coupled Modified Ko-rtewegde Vries Equations is studied by Veersha et 

al. in [37]. SolitaryWave Solutions for a Time-Fraction Generalized Hirota-

Satsuma Coupled KdV Equation by a New Analytical Technique investigated 

in [30]. In [38] Wu et al. introduced a 4×4 matrix spectral problem with three 

potential and derived new hierarchy of nonlinear evolution equation which 

are a generalized Hirota-Satsuma KdV ( Korteweg-De Vries) equations, and 

several other studies about fractional generalized Hirota-Satsuma coupled 
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KdV system are investigated in [34, 26, 12, 16]. Motivated by above 

literauture study, in this work, we consider the time fractional generalized 

Hirota-Satsuma coupled KdV system presented by a system of partial 

differential equations with Caputo-Fabrizio operator to find approximate 

solution. 

The time fractional generalized Hirota-Satsuma coupled KdV system is 

given as  
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with initial conditions [11] as follows 
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 (1.2) 

where m, ,0,   and  are arbitrary constants. 

The systems Equation1.1 becomes classical given in [38] for .1  

The rest of this paper is sorted out as follows. In Section 2, preliminary 

results and definitions related with fractional calculus are presented. In 

Section 3, iterative Laplace transform method pertaining to novel Caputo-

Fabrizio derivative operator is discussed. In Section 4, we center around the 

verification of existence and stability criteria by utilizing Picard successive 

approximation technique and fixed point theory due to Banach. In Section 5, 

the proposed technique is applied to fractional Hirota-Satsuma KdV system 

and simulations are done with plots and tables. Finally, the conclusions are 

given in Section 6. 
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2. Preliminaries 

Definition 2.1 ([8]). Let   ,10,0,,01  bbHu then time 

fractional Caputo-Fabrizio fractional differential operator is defined as 

   
 

 
  
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t

t
CF tdu
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0
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1
exp

12
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 (2.1) 

where  N  is a normalisation function depending on  such that 

    .110  NN  

Definition 2.2 ([6]). The Caputo-Fabrizio fractional integral operator of 

order 10   is given by 

 
 

   
 
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  ,
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like usual Caputo derivative, this new operator gives   ,0


tuDt
CF  if u 

is a constant function. 

The main advantage of Caputo-Fabrizio operator over old operator of 

Caputo is that there is no singularity for st   in the new kernel. 

Definition 2.3 ([8]). The Laplace transform for the Caputo-Fabrizio 

fractional operator of order 10   and m  is given by 
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 (2.3) 

In particular, we have 

    
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3. Iterative Laplace Transform Method 

Consider the Hirota-Satsuma coupled KdV system Equation 1.1 having 

initial conditions Equation 1.2 Applying the Laplace transform both side on 

system, we obtain, 

    
 

  
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Rearranging, we get 
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Further the inverse Laplace transform on equation (3.4) to (3.6), yields 

   
 

 













 






 
 

xxxxx wvuuuL
s

ss
Lutu 33

2

11
0 1  (3.7) 

   
 







 






 
 

xxxx uvvL
s

ss
Lvtv 3

1
0 1  (3.8) 

   
 
















 
 

xxxx uwwL
s

ss
Lwtw 3

1
0 1  (3.9) 

The infinite series solutions obtained by this method given as, 
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The nonlinearity   xxx uvvwuu ,,  and xuw  can be written as 
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where nnn IHG ,,  and nJ  are decomposed as follows 
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We next obtain the following recursive formula by using initial conditions 
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4. Stability analysis of iteration method 

Consider  ,  as a Banach space and define  as self-map of . Also 

 nn w   ,1  denotes precise recurring process. Assume that,  F  

denotes fixed-point set on . Also  consist of minimum one element such that 

n  converges to point  . Fj  Let  nx  and define 

  .,1 nnn xwxp    If 0lim 


n
n

p  implies that 0lim 


n
n

p  then the 
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iteration method  nn w   ,1  is known as -stable. Comparably, we, in 

this manner, think about that, this sequence  nx  has an upper bound. This 

iteration is known as Picard’s iteration and it is -stable, if all these 

conditions are fulfilled for .1 nn    

Theorem 4.1. Consider  ,  as a Banach space and define  as self-

map on  satisfying 

yxX xyx    

for all yx,  where .10,0    Assume that  is Picard -

stable. Consider the equations from (3.11) to (3.13) connected to equation 1.1. 
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 

 
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where 
 
s

ss  1
 is a fractional Lagrange multiplier 

Theorem 4.2. Consider a self-map  defined as 
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is  stable in  baL ,1  
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Proof. Here, we will show that  has a fixed point. Hence, for all 

  NNnm ,  we evaluate the followings. 
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


 
 

xxxx nnmn uvL
s

ss
Ltvtv 3

11  

 
  ,3

11






 






 
 

xxxx mmm vuvL
s

ss
L  (4.3) 

     
 

 





 






 
 

xxxx nnnmn wuwL
s

ss
Ltwtw 3

11  

 
  .3

11






 






 
 

xxxx mmm wuwL
s

ss
L  (4.4) 

By taking norm on both sides (4.2), and without loss of generality, we get 

     
 

 













 






 
 

xnnnnnmn wvuuuL
s

ss
Ltutu

xxxx
33

2

111  

 
  ,33

2

111













 






 
 

xmmmmm wvuuuL
s

ss
L

xxxx
  

(4.5) 

Using triangular inequality and further simplifying (4.5) yields 

     
 

 





 






 
 

xxxxxx mnmn uuL
s

ss
Ltutu

2

111  

   mnnmnm uuuuuu
xxx

 33
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    
xxx mnnmnm vvwwwv  33  

    







 mnnmnm vvwwwv

xxx
33  (4.6) 

As both the solutions play the similar part, we shall assume that 

       tvtvtutu mnmn   

       twtwtutu mnmn   

       tutututu mnmn xx
 1  

       tvtvtvtv mnmn xx
 2  

       twtwtwtw mnmn xx
 3  

        .321 tutututu mnmn xxxxxx
   

Replacing this in (4.6), we obtain the following relation 

     
 

 


 










 
 

mnmn uuL
s

ss
Ltutu 321

1

2

11
  (4.7) 

   mnnmnm uuuuuu
x

 33 1  

   mnnmnm uuwuuv
x

 233  

   






 mnnmnm uuwuuv

x
33 3  (4.8) 

Also 
xx mnnmm vuwvu ,,,,  and 

xnw  are convergent sequence hence they 

are bounded. Therefore, we can obtain different positive constants, 

54321 ,,,,   and 6  for all t such as, 

,,,, 4321 kukwkvku
xnnmm   

.,,, 8765 kwkvkwkv
xxxx nnnm   

   nm,  (4.9) 

Next consider equations (4.8) and (4.9), we get 
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             


 45342111321 333

2

1
tutu mn  

        .333 76632523 mn uu   (4.10) 

where 654321 ,,,,,   and 7  are functions from 

 
.

11













  L
s

ss
L  In the same manner, we can get 

               mnmn vvtvtv  372211654 33  

 (4.11) 

                .33 382311987 mnmn vwtwtw     

 (4.12) 

Therefore, from (4.1) nonlinear self mapping  has a fixed point. Next we 

show that,  satisfies all the conditions in Theorem 4.1. Let (4.10) to (4.12) 

hold and therefore using 

 

       

     

       

       





















 



,133

,133

,1333

333
2

1

,0,0,0

382311987

372211654

76632523

45342111321







  

Thus all the conditions in Theorem 4.2 are satisfied by  Therefore,  is 

Picard -stable. 

5. Numerical Application 

To illustrate the applicability of method discussed in section 3, we 

consider the gen-eralized time fractional Hirota-Satsuma coupled KdV 

equation. 

5.1 Solution of the time fractional Hirota-Satsuma coupled KdV 

equation 

The exact solution of equation 1.1 with initial condition equation 1.2 

when c  and 1  is given as 
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    

 
      

    





























ctxmTxw

ctxmmm

c

mm
txv

ctxkk
k

txu

tanh,

3

tanh4

3

4
,

tanh2
3

2
,

22

2
1

22

22
2

 (5.1) 

Now taking series solution as      TxvTxuTxu
i i ,,,,

0



  

 





0
,

i i Txv  and    





0
,,

i i TxwTxw  then employing recursive 

relation appropriately with initial condition equation 1.2 we get an 

approximate solution as 

 
 

 

   

 

 

 




































1

1

3

4

13

14

1

12
2

3

1

2

2

0

2

22

2

222

0

22

222
2

0

mx

mx

mx

mx

mx

mx

e

e
w

mm

e

emm
v

e

em
mu

 (5.2) 

    

 

    

 

  

 




























22

2

1

22

222

1

32

223

1

1

114

13

1116

1

11116

mx

mx

mx

mx

mx

mxmx

e

tem
w

e

temm
v

e

teem
u

 (5.3) 

       

 72

2273523

2
13

132cosh5sinh1024






mx

mx

e

mmxmmxetm
u  

 72 13

1




mxe
 

 
    mxmxme

e

mx

mx
cosh48cosh2464

13

1 2247

72



  

   mxcosh24  
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 

mxmx

mx
ee

e
v 22

622 16
13

1


  

     2432421 23224  ttemm mx  

            mxttmxt 3cosh14412cosh214   

          mxtttttm sinh3319369332
223   

     mx3sinh21  

 
    142484

1

1 22232

622 


 mttmmme
e

w mx

mx
 

.122 2  mm  

      114161 3  mmt  

      14248 2238 mttmme mx  

Successively applying the algorithm given in Equation (3.11), initial few 

terms of    txvtxu ,,,  and  txw ,  can be obtained from software package 

Mathematica. The approximate solution in series form is given as 

       

       

       














txwtxwtxwtxw

txvtxvtxvtxv

txutxutxutxu

,,,,

,,,,

,,,,

210

210

210

 (5.4) 

 

Figure 1. Surface Plot of  txu ,  for 5.1,1.0 m  and various values of 

1,8.0,6.0  with respect to t. 
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Figure 2. Surface Plot of  txv ,  for 5.1,1.0 m  and various values of 

1,8.0,6.0  with respect to t. 

 

Figure 3. Surface Plot of  txw ,  for 5.1,1.0 m  and various values of 

1,8.0,6.0  with respect to t. 

The numerical values in Tables 1, 2 and 3 show the comparison between 

approximate solutions of Equation 1.1 obtained by using the Caputo-Fabrizio 

derivative operator and Caputo operator for different values of . We 

substitute 5.1,1.0,5.1,1  m  and 1.0  in approximate 

solution and take three terms of all series. Also numerical values of solution 

is evaluated for ,6.0  and 0.8. From these results it has been observed 

that the obtained approximate series solutions are in good agreement with 

the exact solutions. It is also noted that Caputo-Fabrizio fractional derivative 

demonstrates new nature compared with the Caputo fractional derivative.  

Figures 1, 2 and 3 show the surfaces of approximate solution of Equation 

(1.1) for  txu ,  which is of bell shaped but kink-type for  txv ,  and  txw ,  
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when ,1  ,5.1  ,1.0m  5.1  and 1.0  respectively. It is 

observed that all the curves of approximate solution are exactly similar with 

the curves of exact solutions [11]. All Figures and Tables 1 to 2 show that 

there is a remarkable difference at various estimations of  and this model 

depend continuously on the time fractional derivative. 

Table 1. Table of comparison for approximate solution of  txu ,  between 

Caputo fractional derivatives and Caputo-Fabrizio fractional derivative and 

also absolute errors for difference between exact and approximate solution for 

.8.0,6.0  

  Caputo Fabrizio  

Operator 

Caputo Operator Absolute error 

t x 6.0         8.0  6.0          8.0  appxexact uu 

for 1  

 0 0.493595 0.493459 0.493440 0.493390 
81063462.2   

 0.2 0.493667 0.493515 0.493506 0.493490 
81046812.2   

0.25 0.4 0.493754 0.493585 0.493587 0.493506 
910227884.2 

 

 0.6 0.493855 0.493671 0.493684 0.493587 
81006216.2   

 0.8 0.493971 0.493772 0.493795 0.493684 
810813881.1   

 1 0.494101 0.493887 0.493921 0.493887 
81052997.1   

 0 0.493734 0.493585 0.493579 0.493504 
71020534.4   

 0.2 0.493822 0.493663 0.493673 0.493585 
71004902.4   

0.50 0.4 0.493924 0.493756 0.493783 0.493681 
71086055.3   

 0.6 0.494041 0.493864 0.493907 0.493792 
71063665.3   

 0.8 0.494172 0.493986 0.494045 0.493918 
71037452.3   

 1 0.494316 0.494198 0.494198 0.494057 
71007179.3   

 0 0.493892 0.493747 0.493732 0.493661 
61012053.2    

 0.2 0.493996 0.493847 0.493850 0.493768 
61005647.2   

0.75 0.4 0.494114 0.493962 0.493981 0.493890 
61097697.1   

 0.6 0.494245 0.494090 0.494127 0.494027 
61088113.1   

 0.8 0.494390 0.494232 0.494286 0.494177 
610768820.1   

 1 0.494547 0.494387 0.494458 0.494440 
61063769.1   
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Table 2. Table of comparison for approximate solution of  txv ,  between 

Caputo fractional derivatives and Caputo-Fabrizio fractional derivative and 

also absolute errors for difference between exact and approximate solution for 

.8.0,6.0  

  Caputo Fabrizio 

Operator 

Caputo Operator Absolute error 

t x 6.0       8.0  6.0       8.0  appxexact uu  for 

1  

 0 -3.00339 -3.00792 -3.00529 -3.00930 61053707.3   

 0.2 -2.99942 -3.00392 -3.00129 -3.00529 61052590.3   

0.25 0.4 -2.99547 -2.99994 -2.99731 -3.00129 61050304.3   

 0.6 -2.99154 -2.98810 -2.99334 -2.99731 61046866.3   

 0.8 -2.98763 -2.99203 -2.98939 -2.99334 61042300.3   

 1 -2.98375 -2.98810 -2.98547 -2.98940 61036637.3   

 0 -2.99886 -3.00188 -2.99770 -3.00138 51082489.2   

 0.2 -2.99492 -2.99791 -2.99373 -2.99739 51081175.2   

0.50 0.4 -2.99101 -2.99396 -2.98979 -2.99343 51078932.2   

 0.6 -2.98711 -2.99003 -2.98586 -2.98948 51075777.2   

 0.8 -2.98324 -2.98612 -2.98197 -2.98556 51027173.2   

 1 -2.97940 -2.98224 -2.97810 -2.98224 51066819.2   

 0 -2.99433 -2.99584 -2.99156 -2.99424 51050734.9   

 0.2 -2.99043 -2.99191 -2.98762 -2.99029 51044897.9   

0.75 0.4 -2.98655 -2.98800 -2.98372 -2.98636 51035954.9   

 0.6 -2.98269 -2.98411 -2.97984 -2.98246 51023966.9   

 0.8 -2.97887 -2.98025 -2.97599 -2.97859 51009015.9   

 1 -2.97507 -2.97643 -2.97217 -2.97476 51091209.8   
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Table 3. Table of comparison for approximate solution of  txw ,  between 

Caputo fractional derivatives and Caputo-Fabrizio fractional derivative and 

also absolute errors for difference between exact and approximate solution for 

.8.0,6.0  

  Caputo Fabrizio  

Operator 

Caputo Operator Absolute error 

t x 6.0         8.0  6.0          8.0  appxexact uu  for 

1  

 0 1.50275 1.50200 1.50731 1.50531 3104980.2   

 0.2 1.50474 1.50400 1.50929 1.50730 3104950.2   

0.25 0.4 1.50673 1.50599 1.51127 1.50929 3104900.2   

 0.6 1.50871 1.50798 1.51324 1.51127 3104830.2   

 0.8 1.51069 1.50996 1.51320 1.51324 3104740.2   

 1 1.51265 1.51193 1.51715 1.51520 3104640.2   

 0 1.50350 1.50300 1.51108 1.50925 3109850.4   

 0.2 1.50549 1.50499 1.51305 1.51123 3109750.4   

0.50 0.4 1.50747 1.50698 1.51501 1.51320 3109610.4   

 0.6 1.50945 1.50896 1.51696 1.51516 3109440.4   

 0.8 1.51142 1.51094 1.51889 1.51711 3109220.4   

 1 1.51338 1.51290 1.52081 1.51904 3108970.4   

 0 1.50425 1.50400 1.51413 1.51279 3104520.7   

 0.2 1.50623 1.50599 1.51608 1.51476 3104319.7   

0.75 0.4 1.50821 1.50797 1.51802 1.51671 3104052.7   

 0.6 1.51018 1.50994 1.51995 1.51864 3103727.7   

 0.8 1.51214 1.51191 1.52186 1.52057 3103340.7   

 1 1.51410 1.51387 1.52376 1.52247 3102914.7   
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6. Conclusions 

In this study, we have investigated Caputo-Fabrizio fractional order time 

fractional generalized Hirota-Satsuma coupled KdV system by using iterative 

Laplace transform method. Further, by applying Banach theorem, the 

existence and stability results for steady solutions have been proved. The 

series solutions obtained by this powerful approach demonstrate a decent 

consent. It is obvious that the effectiveness of this technique can be 

drastically enhanced by reducing steps and computing more components. Also 

Caputo-Fabrizio fractional operator and the methodology presented in this 

work shall be appropriate for modeling other real world problems. 
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