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Abstract 

An extremely accurate forward and inverse scattering method has been developed and 

implemented for electromagnetic systems. This method is directly applicable for various real-

time in-situ tasks. The forward scattering algorithm utilizes multipole “perfectly matched layer” 

boundary conditions as well as a complex realization of the permittivity functions of highly non-

linear lossy materials, optimizing both storage and computational requirements. The method 

combines several hybrid components due to the inapplicability of typical inverse methods such as 

the conjugate gradient method and Hessian matrix inversion; these latter methods are 

inapplicable due to the hyperbolic nature of the Maxwell-material (MM) equations. Examples of 

highly structured inverse scattering of layered and structured objects that involve up to 23 

independent parameters are given. The newly developed methodology as described and 

implemented herein is self-contained and can be modified to analyze various electromagnetic 

systems, regardless of scale, size and composition. The new method enables the accurate and 

efficient capture of effects of a broad variety of materials with various kinds of poles in the 

permittivity function that often occur with highly structured complex objects with multi-material 

lossy coatings. 

1. Introduction 

The quest for real-time in situ inverse scattering of complex two and 

three-dimensional objects composed of lossy materials coatings has been a 

major focus of the radar industry in part as a consequence of the developing 

technology of coating reflecting objects to act as non-reflecting ones. Other 

applications abound in the microchip industry [2] where the ever-decreasing 

scale size limits the applications of current technologies for metrology based 
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on electron microscopy. The basic requirement is an accurate and sufficiently 

fast algorithm so that real-time results are obtained efficiently. 

This paper presents the development and implementation of a fast and 

accurate electromagnetic forward and inverse broad-band scattering 

algorithms, computing the scattered electromagnetic fields for all desired 

wavelengths simultaneously without sacrificing speed or accuracy. Two 

different inverse transform algorithms are employed. The first method 

involves the use of auxiliary differential equations for partial currents and 

the second method involves cumulative convolutions. The combination of 

these two unconventional techniques allows us to resolve the potential 

difficulty of non-unique solutions which is a result of the classic ill-posedness 

of inverse problems. In other words, we use the availability of two 

independent methods as a compatibility condition to yield a unique solution 

to the inverse problem. In the forward as well as the inverse transforms, the 

number of layers of the scattering objects is unrestricted. 

In all cases, complex lossy materials can be used in which their analytical 

representation is obtained by a hybrid method that involves properties using 

material files that express the refractive index (N) and the absorption rate 

(K) as an explicit function of wavelength (WL) in nanometers (nm) or its 

energy in electron-volts (EV). The scattering process is essentially a 

continuous process requiring continuous representation of the material 

properties which is usually obtained as tables of N, K and wavelength (WL). 

Thus an optimization scheme has been developed using a three columns 

input file and returning an output of seven columns expressing the N, K, the 

real and imaginary reflectivities, the efficiency spectrum and the 

corresponding frequency. This method expresses each material as a sum of 

Debye-poles, Lorentz-poles, asymmetric Lorentz-poles (XLorentz-poles), 

conductivity term and plasma term as described by Lifshitz (ref. [5]) This 

method guarantees that causality holds in all cases. The ability to obtain 

real-time results depends on far field-near field transformations and 

„perfectly matched layer‟ boundary conditions to minimize the computational 

domain whose limitations are well known (see, e.g., [1, 3, 8]). 
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2. Material Analysis 

A typical material-file is expressed as a table of N and K as function of 

WL. The material properties of significance here are the real and imaginary 

parts of the permittivity and the efficiency spectrum (i.e., reflectivity) of a flat 

material. To obtain these properties for a given wavelength is elementary, so 

that if one wishes to develop numerical solutions for the Maxwell-Material 

(MM) equations [4] in the frequency domain a standard input file is 

sufficient. However, the computational cost associated with the MM equation 

per WL is large. If 200 spectral points are needed, the equations must be 

solved 200 times regardless of dimensions. Since accuracy depends primarily 

on the shortest wavelength, all equations are solved on the same grid, 

resulting in a very cumbersome and inefficient algorithm. On the other hand, 

the spatio-temporal MM equations provide the mechanism to obtain the 

scattered wave as a function of space and time, affording the computation of 

the scattered fields for all wavelengths using a novel non-uniform grid fast 

Fourier transform (FFT). 

The development and implementation of the spatio-temporal MM 

equations requires delicate analysis. The material response to an external 

electromagnetic field is usually expressed in terms of the material 

polarization vector, which appears as a non-linear convolution with the 

electric field. If the material is also magnetic, a similar term involves the 

convolution of the magnetic permittivity with the magnetic field. In other 

words, to obtain scattering results with arbitrarily dense spectra we must be 

able to deal with more complicated equations whose entries are not easily 

available. Indeed, it is necessary to express the permittivity function as a 

continuous and differentiable function of the frequency. 

In Paper I [2], it is explained how to do this while complying with basic 

physical principles, such as causality. The method involves judicious use of 

the “Lifshitz Integral” [5] which contains the permittivity function via 

dispersion relations. The result of this analysis is typically given in a form 

where three column input file of WL, N, K is first converted to a seven 

column input file of EV, N, K, RP, IP, Eff, QL, where RP, IP, Eff are the real 

and imaginary parts of the permittivity and Eff is the efficiency reflectivity. 

This detailed input file is inserted into the algorithm of inversion, changing 

the cost function for each iteration. The result is a material file specifying the 

number of poles in each term and the values of their corresponding 
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parameters. If one so wishes, the methodology employed here can yield 

uniform machine accuracy. 

3. Perfectly Matched Layers 

A method is also developed here for constructing perfectly matched layers 

(PMLs) for finite-difference time-domain (FDTD) computation (see [8]) that 

provides excellent impedance matches across a wide band of wavelengths. 

For both direct and inverse scattering computations, it is shown that 

perfectly matched layers provide the needed absorbed reflections over the 

required wide range of wave-lengths, so the computational domain may be 

decreased dramatically providing the ability for real-time analysis. 

The requirement of a PML is that there will be no reflections as the wave 

enters the PML, or crosses from one PML layer to the next, whenever 

Berringer‟s transformations of impedance matching condition is satisfied [3]. 

A generalization of Berringer‟s approach for single lossy poles was introduced 

in [9]. It should be noted that in the case of periodic structures only one PML 

is being used in the bottom of the features and a thin layer of Silicon. In the 

case of isolated features five different PML are used, one on the bottom, one 

on each side of the computational domain and two in the intersecting corners. 

In all cases there is no PML imposed on the top of the domain since the 

reflected eave is the important outcome of the forward computation being fed 

into the inverse problem. Explicitly one obtains: 
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so the ks  term of the computational domain permittivity is multiplied by the 

factor .1 
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ks  term is handled similarly. Notice that if the term is 

a Lorentz pole, ka  is purely imaginary, but the above product is not. 

Therefore the Lorentz pole transforms to an X-Lorentz pole in the PML. 

Since the Debye poles are located at    ,, rjiv  their residues are given 

by: 
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and so the coefficient of the Debye pole at rji  is multiplied by the factor 

.1 
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 The analysis for the poles located at  rji  is analogous to 

analysis of the poles at .jri  

Notice that if the term is a Lorentz pole, ka  is purely imaginary, but the 

above product is not. Therefore the Lorentz pole transforms to an X-Lorentz 

pole in the PML. In this paper a single PML layer is employed for the 

periodic case and 5 different PML layers are used for the isolated feature, 

4. Numerical Methods 

The spatio-temporal MM equations have been widely studied [4] and 

expressed in many forms [10]. Many algorithms have been devised to solve 

these equations for both general and specific purposes [6], with the 

fundamental conflicting issues being accuracy, speed and storage needs. 

Thus, to develop a forward scattering algorithm in two or three dimensions, 

one has to take these competing requirements into account based on end-user 

needs. A typical formulation of the MM equations is involves an integral 

equation representation which is particularly suitable for accurate solutions 

[10]. It is also most suitable to handle convolutions of permittivity functions 

with electric and magnetic fields. However, these integral equations usually 

require large storage due to fine grids since the system is hyperbolic in 

nature and much computing time since the matrices involved require direct 

inversions. Since most lithographic structures contain a SiO2 layer ranging 

from .4nm to 1nm thickness, a sub-.1nm grid is required to resolve this thin 
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SiO2 layer. In other words, even a 1000nm {times600nm 2D simulation 

requires a minimum of 10000 {times6000 grid points resulting in a long 

computation. To alleviate this difficulty, a number of studies include pre-

computed libraries of forward scattering spectra, employing approximate 

algorithms for limited number of wavelengths, using multi-processors 

computers. 

In this paper an alternative hybrid method is presented. A parameter file 

is constructed using the material files discussed above, using the various 

materials accordingly. The substrate can be decomposed into as many layers 

as needed, and the features share this property as well. The finest grid is 

near the circumference of the features, as well as at the very thin SiO2 layers 

needed. The finest grid used is one 15th of the lowest wavelength employed 

by the end user. In particular, the algorithm resolves 1nm with a 20nm grid 

when the lowest wavelength is 300nm. In a homogeneous domain of uniform 

composition the grids become coarser without loss of resolution using several 

non-uniform grid transforms to obtain the final computational grid. In 2D on 

a 3GHz single processor, the TE and TM polarization spectra are computed in 

0.2-0.3 sec for as many wavelengths as one wishes. These computations are 

carried out for periodic as well as non-periodic systems and are applicable to 

reflectometry as well as ellipsometry measurements. The algorithm discussed 

here employs a non-uniform grid and it is applicable to 3D as well. It has 

been implemented in ANSI C and has been compiled on Solaris, Linux and 

Windows operating-systems, making it suitable for in-situ applications on 

many widely used systems. 

As mentioned earlier, the main motivation for this study is to enable non-

invasive reliable determination of composition and shapes of nano-features 

created during microlithography processing. The ultimate goal is the use of 

inverse scattering to determine the physical structure of materials having 

linear and non-linear permittivities, using an explicit FDTD [8] scheme, with 

updated coefficients for each time step; relatively simple applications are 

given below, while more complex applications will described in a third, follow-

up paper. Good real-time performance of this software necessitates using a 

minimal computational domain. Since the substrate of silicon is huge 

compared with the size of features of interest (mm vs. nm), we use perfectly 

matched layer technology [1], while taking into account its potential pitfalls. 



EYTAN BAROUCH 

Applied Mathematical and Computational Sciences, Volume 5, Issue 2, February 2014 

294 

The measurements of the reflected waves describe both TM and TE 

polarizations of a broad-band spectrum of a few hundreds nanometers range. 

The features are described using connected trapezoidal structures which can 

be easily smoothed out by using by using bi-cubic splines. An optimization 

scheme similar to the one reported here is employed, and its most important 

parameters are the uppermost surface and the total height of the features. 

Each trapezoidal structure represents a single or a composite material, thus 

allowing us to obtain the shape and composition of the features [2]. It is 

mentioned here that to avoid the complication associated with trapezoidal 

corner, an optimal cubic-splines are use after every determination of the 

parameters. Here again the parameters are restricted as above to avoid the 

possibility of non-physical results. 

The “cost” function in the actual execution of the inverse scattering 

engine is the length of the vector whose components are the difference 

between computed and measured reflected amplitude per measured 

wavelength, which is standard in scatterometry. The inverse problem has 

been treated as a combination of Brent formulation and multiple Newton 

methods. Each parameter is confined to a compact support domain assuring 

that all parameters are physically realistic. When the system wants to move 

a parameter outside of it prescribed support it moves back to the mirror 

image of its location with respect to the center of the ”bell” function, given by: 
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Note that the function  baxB ,,  vanishes outside the interval    ba ,  

thus providing a compact support for each function or number under this bell 

with   being very small. When a parameter repeats attempting to exist the 

support domain, the parameter is fixed at its value corresponding to the 

lowest available cost function. In this study two tolerances are employed with 

values: .00001.0Brenttoll,001.0Ftol   Due to the complex nature of the 

multi-materials features, the convergence rate is not uniform and feature 

dependent. The system is looking for a clear-cut direction to move and after 

some hovering makes a serious jump. After two or three of such steps both 

tollerances are met and the algorithm exits. It is displayed very explicitly in 

Figure 3-7. 
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The measured signal of amplitude per frequency is a function over 

compact support of the range of frequencies of interest. The measured signal 

is expanded in terms of two different bases within the “bell” function 

introduced by Y. Mayer (private communication). The signal is expressed in 

terms of the first basis, the largest components removed and then expanded 

in terms of the second basis and again the largest components removed. The 

remainder is noise. The sane operation is repeated with reversed order. The 

two remainders are averaged and are subtracted from the original signal. 

This simple procedure is very efficient in cleaning up signals. The spectra 

involved is finite in scope-200-800 nm wavelength. So the optimization 

scheme must be performed over compact support. The classical methods 

require each parameter to vary on the entire infinite domain which is 

definitely non-physical. The classic arctan map that can map the infinite 

domain to a finite domain presents serious difficulty. Some of the parameters 

are quite close to their allowed limits. Using the arctan map provides a zero-

derivative and the parameter cannot move further. To alleviate this 

complication the system is expressed under a compact support ”bell”, 

assuring the ability of the parameters to move within the “bell” anywhere the 

system takes it. The observed signal is cleaned with a simple algorithm under 

the Bell -function and its noise is removed. 

Explicitly one obtains: 
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where n  is Luebbers “recursive accumulator”, the sum of terms of the 

general recursive form given as: 
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only summed over all poles: Debye, Lorentz, and XLorentz. 
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and for Lorentz poles, the expressions are complex, given explicitly as: 
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Only the real part of 
m
p̂  is being used to update the E-field. 

5. Forward and Inverse Scattering 

In Figure 1 the continuous properties of crystalline Silicon are given. The 

left figure displays the efficiency spectrum of crystalline Silicon slab, the 

middle figure exhibits the continuous N and K as obtained from the 
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mentioned optimization algorithm and the right figure displays the real and 

imaginary parts of the reflected wave from the Silicon slab, All graphs are 

continuous functions of the wavelength. 

 

Figure 1. Efficiency, real and imaginary permittivity and reflected field of 

crystalline Silicon. 

To illustrate the resolving power of the forward scattering methodology 

presented here, an example of a 10nm pitch of pure silicon grating of 500nm 

depth is given Figure 2, displaying the TM, TE and unpolarized efficiency 

reflection spectra. 

 

Figure 2. Efficiency spectra (dimensionless) vs. wavelength (in nm) of the 

grating for TM(A), TE(B) and unpolarized (C) fields. 

The difficulties associated with inverse problems are well known, 

particularly for hyperbolic systems such as the MM equations. A general 
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analytical and numerical treatment of existence and uniqueness of solutions 

of ill-posed problems is an immense task. However, in applied inverse 

scattering, existence is certain but uniqueness is not. So one must formulate 

a system with guaranteed existence and examine all relevant solution within 

a narrow range of relevance such as CD control and projectile shapes. In most 

inverse problems, after the various compatibility conditions are constructed, 

partial derivatives with respect to the relevant parameters are needed. 

Numerical differentiation appears at first to be the only available tool, 

leading in some cases to totally wrong answers. 

 This paper employs a newly developed and implemented idea, bypassing 

the difficulties of numerical differentiation and non-uniqueness combined. 

After the initial guess is introduced, a series of coordinate affinic 

transformations take place, for each of several relevant cost functions. 

Several estimated Hessians are constructed together with their conjugate 

vector sets. The system so constructed is „self-taught‟ and keeps updating 

itself until it reaches the prescribed tolerance and exits. As the Hessians get 

updated a second tolerance array invokes a second inverse algorithm with 

cubic convergence compared with the slower quadratic convergence rate. This 

split can be imposed at any stage with the understanding that the possibility 

of a non-unique solution will be detected as a result of the varying 

convergence rate. This methodology is heavily related to the forward 

scattering algorithm. It should be noted here that not all non-unique 

solutions are necessarily bad, since the main goal is to predict the feature 

shape and composition. As an example consider a trapezium shape described 

by three trapezia. The upper and lower CD and the feature height describe 

the uniquely, but the other four parameters can vary without affecting the 

final outcome (as long as the trapezium shape is preserved). 

Several examples are given below with increasing complexity. In all of 

these examples, there is a common display order, viz., the initial guess, the 

final match and the target feature which is the desired one. Following the 

feature display, the efficiency spectra of the initial, intermediate, final and 

target are displayed. In most cases, the spectra employed is the unpolarized 

spectra determined by averaging the TE and TM polarizations, which are 

always computed by the forward scattering algorithm. In all examples here 

the substrate is composed of four layers. These layers are given in ascending 
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order as: 1. Silicon substrate, 2. Gate oxide SiO2 of 1.4nm thickness, 3. 

Polysilicon of 120nm thickness and 4. ARC SiON of 20nm. The photoresist is 

allowed to change between 50nm-350nm. In these example the substrate 

layers‟ thickness is kept fixed while all feature parameters are allowed to 

vary freely. In Figure 3 and Figure 4 the case of seven parameters feature is 

displayed. In Figure 3 the initial, final and target spectra are displayed. As 

can be clearly seen, each target point is matched by the final spectral points, 

while the initial spectrum is distinctly different. In Figure 4 the actual 

features are exhibited, according to the same order recipe of “first, final, 

target”. In Figures 5-8, a 23-parameter feature is exhibited in the same order. 

Note that although the substrate is not displayed, it is an integral part of all 

computations. 

 

Figure 3. A comparison of the spectra of 7 parameters feature composed of 

three trapezoid, displaying the initial starting spectrum (A), the final 

spectrum (B) and the target spectrum (C). As can be clearly seen, (B) and (C) 

are indistinguishable. 
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Figure 4. The actual shapes of the features composed of 3 trapezoid (7-parameters) of 

the inverse scattering process. These are the initial (A), final (B)and the actual target 

(C). Note that again (B) and (C) are indistinguishable. 

 

Figure 5. An inverse-scattering display of the initial (A), intermediate (B), final (C) 

and target (D) of the 23 parameters feature expressed as 11 trapezoid. Note that 

again (C) and (D) are indistinguishable. 

 

Figure 6. A plot of the final spectra (dimensionless) vs. wavelength (in nm) of the TM 

polarization (A), TE polarization (B) and the unpolarized (C) spectra of the 23 

parameters feature. All dimensionless spectra are plotted vs. wavelength (in nm). 
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Figure 7. The reflection efficiency spectra of the inverse scattering process of 

the 23 parameters feature. The spectra of the initial (A), intermediate (B), 

final (C), and the target (D) are plotted (dimensionless) vs. wavelength (in 

nm). 

 

Figure 8. A comparison of the final unpolarized efficiency spectrum (A) with 

the target efficiency unpolarized spectrum (B). As can be seen they are 

indistinguishable and agree to machine accuracy. 

6. Conclusions 

A very fast and accurate forward and inverse scattering algorithms as 

well as complicated lossy material analysis methodology have been presented. 
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The speed, accuracy and flexibility of the system presented here, demonstrates 

its ability to perform in-situ metrology analysis in real-time on manufacturing 

IC lines and electromagnetic problems at other scales, such as radar. 
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