

A STUDY ON $**_{g\alpha}$ -OPEN AND $**_{g\alpha}$ -CLOSED MAPS IN TOPOLOGICAL SPACE

A. SINGARAVELAN

Department of Mathematics Kongunadu Arts and Science College (Autonomous) Coimbatore-641029, Tamilnadu, India E-mail: singaravelna_ma@kongunaducollege.ac.in

Abstract

This paper focused on various results obtained from $**g\alpha$ -continuous functions in topological spaces. $**g\alpha$ -closed maps and $**g\alpha$ -open maps is introduced in this paper using $**g\alpha$ -closed set and $**g\alpha$ -open set. This study includes some properties of $**g\alpha$ -closed maps and $**g\alpha$ -open maps along with its results.

1. Introduction

In 1963, N. Levin introduced semi open sets and semi continuity in topological space [8]. In 1991, a week form of continuous function called generalized continuous maps was introduced and studied by K. Balachandran, Sundaram and H. Maki [1]. Y. Gnanambal and K. Balachandran [7] introduced gpr-continuous function and studied some of its properties in the topological spaces. M. Vigneshwaran and R. Devi [10] studied by introducing $*g\alpha$ -continuous function. A. Singaravelan [9] introduced $**g\alpha$ -continuous function in the topological space.

In this paper, discussed characteristic of $**g\alpha$ -continuous functions in

²⁰²⁰ Mathematics Subject Classification: $54\mathrm{C10}.$

Keywords: $**g\alpha$ -open set, $**g\alpha$ -closed set, $**g\alpha$ -continuous function, $**g\alpha$ -closed maps and $**g\alpha$ -open maps.

Received December 24, 2021; Accepted March 10, 2022

A. SINGARAVELAN

topological space and newly introduced and studied about $**g\alpha$ -closed ($**g\alpha$ -open) maps in topological spaces and some of its results.

2. Preliminaries

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called

(i) a generalized α -closed set (briefly $g\alpha$ -closed) [5] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

(ii) a gpr-closed [6] set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(iii) a ${}^*g\alpha$ -closed set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha$ -open in (X, τ) .

(iv) a ^{**} $g\alpha$ -closed set [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ^{*} $g\alpha$ -open in (X, τ) .

Definition 2.2. A function $f : (X, \tau) \to (Y, \sigma)$ is called

(i) a g-continuous[1] if $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .

(ii) a gpr-continuous [7] if $f^{-1}(V)$ is a gpr-closed set of (X, τ) for every closed set V of (Y, σ) .

(iii) a ${}^*g\alpha$ -continuous [10] if $f^{-1}(V)$ is a ${}^*g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ) .

(iv) a ^{**} $g\alpha$ -continuous [9] if $f^{-1}(V)$ is a ^{**} $g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ) .

(v) a ^{**} $g\alpha$ -irresolute [9] if $f^{-1}(V)$ is a ^{**} $g\alpha$ -closed set of (X, τ) for every ^{**} $g\alpha$ -closed set V of (Y, σ) .

3. Characteristics of $^{**}g\alpha$ -Continuous Functions

Definition 3.01. Let *D* be a subset of a space (Z, τ) .

(i) The set $\bigcap \{F \subset Z; D \subseteq F, F \text{ is }^{**}g\alpha \text{ -closed}\}\$ is called the $^{**}g\alpha \text{ -closure}$ of *D* and is denoted by $^{**}g\alpha - cl(D)$.

(ii) The set $\cup \{F \subset X; F \subseteq D, F \text{ is } {}^{**}g\alpha \text{ -open}\}$ is called the ${}^{**}g\alpha \text{ -interior of } D \text{ and is denoted by } {}^{**}g\alpha \text{ - int}(D).$

Theorem 3.02. Let $h : (Z, \tau) \to (W, \eta)$ be a function. Then the following conditions are equivalent.

(i) h is ^{**}ga -continuous

(ii) The inverse image of every open set in (W, η) is ^{**} $g\alpha$ -open in (Z, τ) .

Proof. (i) \rightarrow (ii) Let G is open subset of (W, η) . Then (W - G) is closed in (W, η) . Since h is ^{**}ga -continuous, $h^{-1}(W - G) = Z - h^{-1}(G)$ is ^{**}ga -closed in (Z, τ) . Hence $h^{-1}(G)$ is ^{**}ga -open in (Z, τ) .

(ii) \rightarrow (i) Let V be a closed subset of (W, η) , then (W - V) is open in (W, η) hence by hypothesis (ii) $h^{-1}(W - V) = Z - h^{-1}(V)$ is ^{**}ga -open in (Z, τ) , hence $h^{-1}(V)$ is ^{**}ga -closed in (Z, τ) . Therefore, h is ^{**}ga -continuous.

Theorem 3.03. Let $h : (Z, \tau) \to (W, \eta)$ be a function. Then the following conditions are equivalent.

(1) For all $z \in Z$ and every open set M containing h(z) there exists a ** ga -open set N containing z such that $h(N) \subset M$.

(2) $h(^{**}g\alpha - Cl(D)) \subset Cl(h(D))$ for every subset D of (Z, τ) .

Proof. (1) \rightarrow (2) Let $z \in h(*^{*}g\alpha - Cl(D))$ then there exists a $t \in *^{*}g\alpha - Cl(D)$ such that z = h(t). We claim that $z \in Cl(h(D))$ and let N be

Advances and Applications in Mathematical Sciences, Volume 22, Issue 8, June 2023

any open neighborhood of z. Since $t \in {}^{**}g\alpha - Cl(D)$ there exists an ${}^{**}g\alpha$ open set M such that $t \in M$ and $M \cap D \neq \phi$. Therefore $z = h(t) \in Cl(h(D))$. Hence $h({}^{**}g\alpha - Cl(D)) \subset Cl(h(D))$.

(2) \rightarrow (1) Let $t \in Z$ and N be any open set containing h(t). Let $D = h^{-1}(W - N)$, since $h({}^{**}g\alpha - Cl(D)) \subset Cl(h(D)) \subset (W - N)$, ${}^{**}g\alpha - Cl(D) \subset h^{-1}(W - N) = D$. Hence ${}^{**}g\alpha - Cl(D) = D$. Since $h(t) \in N$ implies $t \in h^{-1}(N)$ implies $t \notin D$ implies $t \notin {}^{**}g\alpha - Cl(D)$. Thus there exists an open set M containing t such that $M \cap D = \phi$ implies $h(M) \cap h(D) = \phi$. Therefore $h(M) \subset N$.

Theorem 3.04. If $h: (W, \tau) \to (Z, \gamma)$ is continuous function, then $h(^{**}g\alpha - Cl(S)) \subset Cl(h(S))$ for every subset S of (W, τ) .

Proof. Given $S \subset h^{-1}(h(S))$, we have $S \subset h^{-1}(Cl(h(S)))$ now Cl(h(A)) is closed set in (Z, γ) and hence $h^{-1}(Cl(h(S)))$ is a ^{**}ga -closed set containing S. Consequently ^{**}ga - $Cl(S) \subset h^{-1}(Cl(h(A)))$, therefore $h(^{**}ga - Cl(S)) \subset$ $h^{-1}(Cl(h(S))) \subset Cl(h(S))$ implies $h(^{**}ga - Cl(S)) \subset Cl(h(A))$.

Theorem 3.05. Let $h: (W, \tau) \to (Z, \gamma)$ be a function from a topological space (W, τ) into topological space (Z, γ) , then the following conditions are equivalent

(1) For every subset G of (W, τ) , $h(^{**}g\alpha - Cl(G)) \subset Cl(h(G))$.

(2) For each subset Q of Y, $**g\alpha - Cl(G) \subset h^{-1}(Cl(Q))$.

Proof. (1) \rightarrow (2) Suppose that (1) holds and let Q be any subset of (Z, γ) , replacing G by $h^{-1}(Q)$ we get from (2) $h({}^{**}g\alpha - Cl(h(h^{-1}(Q))) \subset Cl(h(Q))$. Hence ${}^{**}g\alpha - Cl(G) \subset h^{-1}(Cl(Q))$.

(2) \rightarrow (1) Suppose that (ii) holds. Let Q = h(G), where G is a subset of (W, τ) . then we get from (ii) $**g\alpha - Cl(G) \subset **g\alpha - Cl(h(h^{-1}(G))) \subset$

 $h^{-1}(Cl(h(g)))$. Therefore $h(^{**}g\alpha - Cl(G)) \subset (Cl(G))$.

Theorem 3.06. Let $h: (W, \tau) \to (Z, \gamma)$ be a ^{**} ga -continuous map and let J be a ^{**} ga -closed subset of (W, τ) . Then the restriction $h_J: (J, \tau_J) \to (Z, \gamma)$ is also ^{**} ga -continuous.

Proof. Let N be any closed set in (Z, γ) . Since f is ^{**}ga -continuous, $h^{-1}(N)$ is ^{**}ga -closed in (W, τ) . Let $h^{-1}(N) \cap M = M_1$, then M_1 is ^{**}ga closed in (W, τ) by (if G is an ^{**}ga -closed set and N is closed set. Hence $G \cap N$ is an ^{**}ga -closed set). Since $(h_J)^{-1}(N) = h^{-1}(N) \cap J = J_1$, we need to show that J_1 is ^{**}ga -closed in (J, τ_J) . Let U be any ^{**}ga -open set of (J, τ_J) . Such that $J_1 \subseteq U$. Since U is ^{**}ga -open set of $(J, \tau_J), U = K \cap J$ for some ^{**}ga -open set in (W, τ) by (if $G \in {}^{**}ga - O(W_O)$, then $G = L \cap W_O$ for some $L \in {}^{**}ga - O(W)$, where (W, τ) is a topological space and W_O is a sub space of (W, τ) . Now $J_1 \subseteq K \cap J$ and so $J_1 \subseteq K$. Since J_1 is ^{**}ga -closed in (W, τ) . $Cl(J_1) \subseteq K$, we have $Cl_{J1}(J_1) = Cl(J_1) \cap J$ $\subseteq K \cap J = U$ and therefore J_1 is ^{**}ga -closed in (J, τ_J) and hence h_J is ^{**}ga -continuous.

4. ** $g\alpha$ -Closed Maps and ** $g\alpha$ -Open Maps in Topological Space

Definition 4.01. A map $k: (W, \gamma) \to (Z, \mu)$ is said to be ^{**} $g\alpha$ -closed if the image of every closed set in (W, γ) , ^{**} $g\alpha$ -closed in (Z, μ) .

Definition 4.02. A map $k : (W, \gamma) \to (Z, \mu)$ is said to be ^{**} $g\alpha$ -open if the image of every open set in (W, γ) , ^{**} $g\alpha$ -open in (Z, μ) .

Theorem 4.03. Every closed map is a ** ga -closed map.

Proof. Let $k: (W, \gamma) \to (Z, \mu)$ be closed map and N be a closed set in

 (W, γ) , then k(N) is closed, every closed set is ^{**} $g\alpha$ -closed hence $k(N)^{**} g\alpha$ - closed in (Z, μ) , thus k is ^{**} $g\alpha$ -closed. The reverse implication of the above theorem need not be true from the following example.

Example 4.04. Let $W = \{l, m, n\} = Z$ with topologies $\gamma = \{W, \tau, \{l\}, \{m, n\}\}$ and $\mu = \{Z, \tau, \{m\}, \{l, m\}\}$, define $k : (W, \gamma) \to (Z, \mu)$ by k(l) = l, k(m) = m, k(n) = n.

^{**} $g\alpha$ -closed sets are W, τ , $\{n\}$, $\{l, n\}$, $\{m, n\}$. Then k is ^{**} $g\alpha$ -closed map but not closed as the image of the closed set $\{m, n\}$ in (W, γ) is $\{m, n\}$ is not closed set in (Z, μ) .

Theorem 4.05. A map $k : (W, \gamma) \to (Z, \mu)$ is ^{**}ga -closed map \Leftrightarrow for each subset G of (Z, μ) and for each open set P containing $k^{-1}(G)$ there is a ^{**}ga -open set Q of (Z, μ) such that $G \subseteq Q$ and $k^{-1}(Q) \subseteq P$.

Proof. Suppose k is ^{**}ga -closed. Let G be a subset of (Z, μ) and P be an open set of W such that $k^{-1}(G) \subseteq P$ then Q = Z - k(W - P) is a ^{**}ga -open set containing G such that $k^{-1}(G) \subseteq P$. Conversely, suppose that L is a closed of W. Then $k^{-1}(Z - k(L)) \subseteq W - L$ and W - L is open by hypothesis, there is a ^{**}ga -open set Q of (Z, μ) such that $Z - k(L) \subseteq Q$ and $k^{-1}(Q) \subseteq W - L$. Therefore $L \subseteq W - k^{-1}(Q)$ hence $Z - Q \subseteq k(L \subseteq k$ $(W - k^{-1}(Q)) \subseteq Z - Q$ which implies k(L) = Z - Q. Since Z - Q is ^{**}ga closed, k(L) is ^{**}ga -closed and thus k is ^{**}ga -closed map.

Theorem 4.06. A map $k : (W, \gamma) \to (Z, \mu)$ is a continuous, ^{**}ga -closed map from a normal space W onto space Z, then Z is normal.

Proof. Let K and L are disjoint closed sets of Z, then $k^{-1}(k)$ and $k^{-1}(l)$ are disjoint closed sets of W. Since W is normal there are disjoint open sets U, V in W such that $k^{-1}(K) \subseteq U$ and $k^{-1}(L) \subseteq V$. Since ^{**}ga -closed by

previous theorem there are open sets G and H in Z, such that $K \subseteq G$, $L \subseteq H$ implies $k^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$, since U, V are disjoint int(G) and int(H) are disjoint open sets. Since G is $**g\alpha$ -open, K is closed and $K \subseteq G, K \subseteq int(G)$, similarly $L \subseteq int(H)$.

Theorem 4.07. A map $k : (W, \gamma) \to (Z, \mu)$ is an open, continuous, ^{**}ga - closed surjection where W is regular, then Z is regular.

Proof. Let U be an open set containing a point of W such that k(m) = p, since W is regular and k is continuous, there is an open set V, such that $m \in V \subseteq Cl(V) \subseteq k^{-1}(V)$. Here $p \in k(V) \subseteq k(Cl(V)) \subseteq U$. Since k is ^{**}ga closed, k(Cl(V)) is ^{**}ga -closed set contained in the open set U. $Cl(k(Cl(V))) \subseteq U$ and hence $p \in k(V) \subseteq Cl(k(V)) \subseteq U$ and k(V) is open, since k is open. Hence Z is regular.

Theorem 4.08. A map $k : (W, \gamma) \rightarrow (Z, \mu)$ is continuous, and ^{**}ga - closed and M is a ^{**}ga -closed set of W, then k(M) is ^{**}ga -closed.

Proof. Let $k(M) \subseteq N$ where N is an open set of Z. Since k is continuous, $k^{-1}(N)$ is an open set containing M. Hence $Cl(M) \subseteq k^{-1}(N)$ as M is a ^{**}g α closed set. Since k is ^{**}g α -closed k(Cl(M)) is a ^{**}g α -closed set contained in the open set N, which implies that Cl(k(Cl(M)))(N) and hence $Cl(k(M)) \subseteq N$ so k(M) is a ^{**}g α -closed.

Theorem 4.09. A map $k : (W, \gamma) \to (Z, \mu)$ is continuous, and ^{**}gaclosed and V is a ^{**}ga-closed set of W, then $f_V : V \to (Z, \mu)$ is continuous and ^{**}ga-closed.

Proof. Let *E* be closed set of *V*, then *E* is a ^{**}*g* α -closed set of *Z* from the above theorem, it follows that $k_V(E) = k(E)$ is ^{**}*g* α -closed set of *Z*. Hence k_V is ^{**}*g* α -closed also k_V is continuous.

Theorem 4.10. A map $k: (W, \gamma) \to (Z, \mu)$ is ^{**}ga -closed and $G = k^{-1}(B)$ for some closed set B of Z, then $f_G: G \to Z$ is a ^{**}ga -closed.

Proof. Let *F* be a closed set in *G*, then there is a closed set *H* in *W*. Such that $F = G \cap H$ then $k_G(F) = k(G \cap H) = k(H) \cap k(G) = k(H) \cap B$. Since *k* is a ^{**}ga -closed, k(H) is ^{**}ga -closed in *Z*, $k(H) \cap B$ is ^{**}ga -closed in *Z*. Since the intersection of a ^{**}ga -closed set and a closed set is ^{**}ga -closed set. Hence k_G is ^{**}ga -closed.

Theorem 4.11. Every open map is a ** ga -open map.

Proof. Let $k: (W, \gamma) \to (Z, \mu)$ be open map and G be a open set in W, then k(G) is open, every open set is $**g\alpha$ -closed hence $k(G)^{**}g\alpha$ -open in Z, thus k is $**g\alpha$ -open.

The converse of the above theorem need not be true from the following example.

Example 4.12. Let $W = \{l, m, n\} = Z$ with topologies $\gamma = \{W, \tau, \{l, m\}\}$ and $\mu = \{Z, \tau, \{l, n\}\}$, define $k : (W, \gamma) \to (Z, \mu)$ by k(l) = l, k(m) = m,k(n) = n.

^{**} $g\alpha$ -open sets are W, ϕ , $\{l\}$, $\{m\}$, $\{l, m\}$. Then k is ^{**} $g\alpha$ -open map because the image of $\{l, m\}$ in W is $\{l, m\}$ ^{**} $g\alpha$ -open in Z, but not open map because the image of $\{l, m\}$ in W is not in open in Z.

Theorem 4.13. If $k: (W, \gamma) \to (Z, \mu)$ is closed map and $j: (Z, \mu) \to (H, \eta)$ is ^{**}ga closed map, then the composition $j \circ k: (W, \gamma) \to (H, \eta)$ is ^{**}ga closed map.

Proof. Let *M* be any closed set in (W, γ) . Since *f* is closed map, k(M) is closed set in (Z, μ) . Since *j* is ^{**}*g* α -closed map, j(k(N)) is ^{**}*g* α -closed set in (H, η) . That is $j \circ k(N) = j(k(N))$ is ^{**}*g* α -closed and hence $j \circ k$ is ^{**}*g* α -closed map.

Reference

- K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 12 (1991), 5-13.
- M. Caldas, Semi-generalized continuous maps in topological spaces, Port. Math. 52(4) (1995), 339-407.
- [3] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. 14 (1993), 41-54.
- [4] R. Devi, K. Balachandran and H. Maki, on generalized α-continuous maps, Far. East J. math 16 (1995), 35-48.
- [5] R. Devi, K. Balachandran and H. Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math 29(1) (1998), 37-49.
- [6] Y. Ganambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math 28(3) (1997), 351-360.
- [7] Y. Gnanambal and K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure appl. Math 30(6) (1999), 581-593.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [9] A. Singaravelan, ^{**} $g\alpha$ -continuous and ^{**} $g\alpha$ -irresolute maps in topological spaces, IOSR Journal of Mathematics 5(11) (2015), 74-81.
- [10] M. Vigneshwaran and R. Devi, On GαO-kernel in the digital plane, International Journal of Mathematical Archive 3(6) (2012), 2358-2373.
- [11] M. Vigneshwaran and A. Singaravelan, On properties of ^{**}gα -closed sets and some application, International Journal of Mathematical Archive 5(10) (2014), 139-150.