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Abstract 

In this paper, we have carried out a comparative study on the methodology and 

applicability of two control schemes: Backstepping Designing method and Adaptive Control 

scheme. In this study, Projective Synchronization (PS) using Backstepping Design Control 

method and Function Projective Synchronization (FPS) using Adaptive Control Scheme has 

been achieved between two identical chaotic Dumbbell Satellite systems which is under periodic 

external disturbances, and each is evolving from different initial conditions. PS is a special case 

of FPS, and we have shown a comparison of the results on PS by both control schemes. 

Numerical simulations are carried out in both cases, and they are in agreement with our 

analytical findings. 

1. Introduction 

Ever since the drive-response method for synchronization of two identical 

chaotic systems with different initial conditions (Pecora and Carroll, [8]) was 



AYUB KHAN, RIMPI PAL and SHIVANI 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 2, December 2023 

134 

proposed, Chaos Synchronization has become an active research subject in 

non-linear science and it has been intensively studied in the last two decades 

(Hu and Zhang, [7]; Cai et al., [4]; Elabbasy et al., [6]). Various types of chaos 

synchronization have been proposed such as Complete Synchronization 

(Kuntanapreeda, [9]), Phase Synchronization (Erjaee and Momani, [10]), 

Generalized Projective Synchronization (Farivar et al., [11]), Anti-

Synchronization (El-Dessoky, [13]), Lag Synchronization (Shahverdiev and 

Sivaprakasam, [15]), Modified Projective Synchronization (Li, [16]) and 

Function Projective Synchronization (Du, [17]; Luo and Wei, [18]). 

In particular, among all kinds of chaos synchronization (Mainieri and 

Rehacek, [19]), Projective Synchronization (PS) is one of the most noticeable 

ones that the drive and response vectors evolve in a proportional scale- the 

vectors become proportional. Function Projective Synchronization (FPS), is 

the more general definition of projective synchronization. As compared with 

projective synchronization, Function Projective Synchronization (FPS) means 

that the drive and response systems could be synchronized upto a scaling 

function. This feature can be used to get more secure communications. 

Chaotic Dumbbell satellite (Celletti and Sidorenko [5]) is an interesting 

model which is an example of a system under external periodic forces and is a 

departure from the usual models which are taken into consideration. Also, 

while applying the Adaptive control scheme, it can be aptly modified into the 

required form for application without affecting its chaotic nature. Thus, we 

choose this as our model and have also performed numerical simulations on it 

to confirm our analytical findings (Arriaga-Camargo et al. [1]). 

Backstepping design control has been used as an effective control method 

in many satellite problems. It has been used to present attitude control of 

satellites taking into consideration the presence of uncertainties caused by 

external disturbance (Babaei F. S. and Akbarzadeh K. A. [2]). Recently, the 

modeling and controlling the fuel slosh phenomenon in a satellite has been 

investigated in the field of satellite attitude control using various forms of 

backstepping control method. Further, adaptive control methodology has also 

been used in synchronization of satellite problems in the past. 

Synchronization of two identical non-integer order chaotic satellite systems 

has been carried out using adaptive control methodology (Kumar S. et al. 

[14]). The problem of decentralized attitude synchronization and tracking for 
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a group of spacecraft subject to inter spacecraft communication resources 

constraints, model uncertainties and external disturbances has been 

investigated using adaptive control (Wu B. et al. [3]). 

In this paper, we present analysis of both projective synchronization as 

well as function projective synchronization and compare the results of PS 

obtained from both schemes. 

In section 2, Backstepping procedure for obtaining PS and Adaptive 

control scheme in systems with uncertain time-varying parameters for 

obtaining FPS are explained (Tarammim and Akter A, [21]). 

In section 3, the chaotic Dumbbell Satellite model is briefly introduced. 

In section 4, the two methods explained in section 2 are applied on the 

above model. 

In section 5, Numerical simulations are performed. 

In section 6, we make observations. We observe the simulations and show 

they confirm with our analytical findings. 

Finally in section 7, we analyze the results and draw a comparison of 

these schemes. We provide a comparison of the results obtained for projective 

synchronization in both cases which in turn demonstrate the effectiveness of 

the proposed methods. The analytical results and the numerical simulations 

help us in understanding which of the schemes is more suitable and under 

what conditions. All this helps in drawing a conclusion. 

2. Projective Synchronization and Function Projective 

Synchronization 

2.1 Projective synchronization via Backstepping design 

The Backstepping design is a recursive procedure that combines the 

choice of Lyapunov function with the design of a controller. In this 

manuscript, we apply it to obtain PS between two identical chaotic systems 

evolving from different initial conditions. 

Remark 1. It represents a systematic procedure for selecting a proper 

controller in chaos synchronization. 
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Remark 2. It can be applied to any chaotic systems whether they are 

externally excited or not. 

Remark 3. The backstepping approach stabilizes the error system by 

introducing a z-subsystem related to the error e-subsystem. In each ith step, it 

designs controller iu  to control the strict-feedback “ iz -subsystem” which in 

turn controls the “ ie -subsystem”. At the next step, the sub-system expands 

and this process continues till the entire “error dynamical system 

 neeee ,,,, 321  ” is controlled and the controls  nuuuu ,,,, 321   are 

designed. 

Thus, we take the general form of the chaotic master system as 

   txftx ,  (1) 

Identical slave system is given by 

     tutyfty  ,  (2) 

where   ,,,2,11;
T

i nxx     ,,,2,11;
T

i nyy    ,2,11;  iuu  

 nnnT
fn   :,,  is the matrix function containing all external 

disturbances which are known. Let there exists a non-zero constant S. 

We define error functions as:      tSytxte   where 

    .,,2,11; nT
i nete    Clearly, if 0e  as ,t  we say PS is 

achieved between systems (1) and (2). Using (1) and (2), error dynamical 

system is given by: 

       tSutySftxfte  ,,   (3) 

We now stabilize (4) by introducing and stabilizing a z-subsystem, where 

z’s and e’s are connected as follows: 

Let ,11 ez   then by first equation of (3), we have 

 1211 , ueFz    (4) 

Next, we consider 2e  as virtual controller  .11 zS  Now, by approximately 

choosing ,1u  there is a suitable Lyapunov function 1V  such that 

  0;0 111  zzV  
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  0;0 111  zzV  

Further, 

  0;0 111  zzV  

  0;0 111  zzV  

Thus, (4) is asymptotically stable. Next, as 2e  is a virtual controller, we 

define  1122 zSez   so that new 21 zz   subsystem is defined as  

 1111 , uzFz   

 232112 ,,, uezzFz   (5) 

In order to stabilize this subsystem, we again choose 2u  in such a way its 

second Lyapunov function  212 , zzV  exists, 2V  is positive definite and 2V  is 

negative definite. So, it can be concluded that (5) is asymptotically stable. We 

continue this procedure, till we obtain the stable full dimension 

 nzzz ,,, 21   via last Lyapunov function by the design of a control input 

function un. Finally, following the definition of the ie ’s, it follows that 

 neee ,,, 21   is also stable and converges to  .0,,0,0    

2.2. Function Projective synchronization via Adaptive Control 

Scheme 

More often than not, the chaotic systems contain numerous parameters 

and in most practical situations, their values are uncertain and time-varying. 

To address these issues, we design adaptive controllers which have the 

additional property that they can be decomposed into a parameter estimation 

module together with control-law synthesis procedure. For this purpose, we 

re-write the chaotic master system as: 

      txftxftx ,, 21   (6) 

and identical chaotic slave system is: 

         tuttyftyfty  ˆ,, 21  (7) 

where   ,,,2,11;
T

i nxx     ,,,2,11;
T

i nyy    ,2,11;  iuu  

 ;, nT
n   u is the controller vector, ,:1

nnf    
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 Ti
pnn pf ,,2,11;,:2    is the known parameter vector 

and      Ti ptt ,,2,11;ˆˆ   is the uncertain time-varying parameter 

vector. 

Let    00  ttS  be any continuous function. We define FPS error 

functions as        tytStxte   where     .,,2,11;
T

i pete    

Definition. The systems defined by (1) and (2) are said to be F.P. 

synchronous upto the desired scaling function  tS  if 

  0lim 


te
t

  (8) 

where   represents vector norm. 

Remark. If   ,,  nItS  the FPS problem reduces to projective 

synchronization (PS). Further, if   ,nItS   we obtain complete 

synchronization (CS) while   nItS   implies anti-synchronization(AS). 

Thus, PS, CS and AS are special cases of FPS. 

The error dynamical equation using (6) and (7) is given by: 

                  ytStuttyftyftStxftxfte   ˆ,,,, 2121  (9) 

For given continuous function  tS  and any initial value (x(0), y(0)), 

systems (1) and (2) will be F.P. synchronous and further uncertain time-

varying parameter ̂  will be estimated if the adaptive control law and 

parameter update laws are designed as follows: 

Adaptive control law: 

                   keytSttyftyftSxfxftutS  ˆ,,ˆ 2121  (10) 

Parameter update law: 

     ˆˆ 2 n
T

kexf  (11) 

where    pkdiagknkdiagk ii ,,2,1;ˆ,,,2,1;     and all k’s are 

positive constant gains. 

Proof. Substituting (10) into (9), we get 
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      ketxfte  ˆ,2   (12) 

We now choose Lyapunov function V as: 

   eeeetV TT

2

1

2

1
 

where .ˆ e  Thus, .̂
e  Finally, using (11) and (12) we obtain, 

   eeeetV TT   

            ˆˆ, 22 n
TTT kexfeketxfe  

        exfeexfeeekeke
TTTTTTT

22    

 eekeke TT  

0  (13) 

So, by Lyapunov stability theorem, the error dynamical system is 

globally, asymptotically stable at equilibrium point .0 n  Thus, FPS is 

achieved between the systems (6) and (7). 

3. Model Explanation 

The equation of motion of a Dumbbell satellite in the central gravitational 

field of the earth under the influence of the solar radiation pressure together 

with the effects of Earth’s shadow and phenomenological factor (Sharma et 

al. [20]) is given by: 

    sincoscossin3sin2cos1 3kveve   

uEve sinsin2   

where the parameters are defined as follows: 

e  eccentricity of the orbit of the center of mass 

  variable radius of circular orbit 

E  Phenomenological parameter characterizing the periodic term. 
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v  The frequency of the external periodic force. 

  Inclination of the oscillating plane of the orbit of the center of mass of 

the system with the plane of ecliptic. 

  The angular separation of the solar position vector projected on the 

orbital plane. 

v  The true anomaly of the center of mass of the system in the ecliptic 

orbit. 












 sin

2

2

1

1
3

rm

B

m

B
k  

where   The product of gravitational constant and mass of the Earth 

   3,2,1; iBi  The absolute values of the forces due to direct solar 

radiation pressure exerted on masses of satellites 1m  and 2m  respectively. 

r  Earth’s shadow function 

  Angle between the axis of cylinder (shadow beam) and line joining 

the Earth’s center and the end point of the orbit of the center of mass. 

We note that in this model, instead of ’t’, true anomaly ’v’ is the 

independent variable. Thus, in the next section, all dots will represent 

differentiation w.r.t. v. 

4. Application of PS and FPS to Dumbbell Satellite Model 

4.1 PS using Backstepping design 

Let 21 , xx    

Thus, system (14) can be now written as: 

  21 xvx   (15) 

    


 1
3

1122 sincoscossin3sin2
cos1

1
xkxxvxe

ve
vx  

 vEve  sinsin2  

(15) is the master system. We write down the slave system as: 
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  121 uyvy   (16) 

    


 1
3

1122 sincoscossin3sin2
cos1

1
ykyyvye

ve
vy  

 vEve  sinsin2  

where 21 , uu  are the controllers to be determined. (16) is the slave system. 

PS errors 21 , ee  are defined as: 

111 Syxe   

2212 Syxe    (17) 

  111 Sueve   

    222 sin2
cos1

1
Suvee

ve
ve 


   (18) 

where 

       11
3

1111 sinsincoscossincossin3 ySxkyySxx  

   .1sinsin2 SvEve   (19) 

Now, we apply backstepping design as discussed in (2.1) 

(i) Let 

11 ez   (20) 

This implies 

  121 Suevz   (21) 

Here  112 zSe   is a virtual controller. 1S  is a control to stabilise 1z z1-

subsystem (21). In order to stabilise 1z -subsystem (21), we choose Lyapunov 

function 1V  as: 

2
11 2

1
zV   

This gives 

dv

dz
z

dv

dV 1
1

1   
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Further if 

01 S  (22) 

and, 

11 zSu    (23) 

Then, 

2
1

1 z
dv

dV
  

Thus, (7) is asymptotically stable. 

(ii) As, 1S  is estimative, error between 2e  and  11 zS  is given by 

 1122 zSez    (24) 

Let us investigate sub-system: 

  121 zzvz   

    222 sin2
cos1

1
Suvee

ve
vz 


  (25) 

In order to stabilise 21 zz   subsystem, we choose a Lyapunov function 

2V  as:  

2
212 2

1
zVV   

This gives 

   





 


 222121
2 sin2

cos1

1
Suvee

ve
zzzz

dv

dV
 

If 

  1222 sin2
cos1

1
zzvee

ve
Su 


   (26) 

Then, 

02
2

2
1

2  zz
dv

dV
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Thus, (25) is asymptotically stable. In 21 zz   coordinates, using 

Lyapunov’s second theory,  ,0,0  which is the only equilibrium point is 

globally asymptotically stable. So, it follows that ,, 2211 ezez   so, as all 

   0,0, 21 zz  asymptotically. 

Thus, PS is achieved. 

4.2 FPS using Adaptive Control Scheme 

We note that system (14) cannot be put in the form of (6). Thus, we 

propose certain modifications in the master system, which are valid near the 

origin and the system is still chaotic for a different set of parametric values. 

Near the origin,   vvv  sin,1cos  where  has a finite value. 

We also re-define the parameters as: 

e

E
f

e

k
d

e

k
c

e
b

e

e
a






















1
,

1

sincos
,

1

coscos
,

1

3
,

1

2
33

 

So, the master system now changes to: 

  21 xvx   

    fvxdxcxxbxvavx  111122 cossincossin1sin  (27) 

where fdcba ,,,,  are the parameters. 

The corresponding slave system is expressed as: 

  121 uyvy   

    211111111212 cossincossin1sin uvfydycyybyvavy   

 (28) 

where 11111 ,,,, fdcba  are the uncertain parameters (functions of v) to be 

estimated and 21 , uu  are the non-linear controller functions such that the 

two chaotic systems are functional projective synchronized. Let  vS  be the 

known scaling function. Then, we define the error functions as: 

  .2,1,  iyvSxe iii  Clearly, FPS between (27) and (28) is achieved upto 

the desired scaling function  vS  iff 0ie  as .v  
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The error dynamical system is given by: 

      1121 uvSyvSeve    

            22112212 ,, uvSyygvSyvSxxgve     (29) 

where 

    fvzdzczzbzazzg  1111221 cossincossin1sin,  

and 

    vfzdzczzbzazzg 1111111121211 cossincossin1sin,   

In order to stabilize the error variables at the origin, we propose the 

active control law as: 

  111211 ekyvSeuS    

        22211221122 ,, ekyygvSyvSxxguS    (30) 

Parameter update law for uncertain parameters as: 

    aekexvva 3221 1sin   

  bekexxvb 42111 cossin   

  cekexvc 5211 sin   

  dekexvd 6211 cos   

  fekvevf 721   (31) 

where ffeddeccebbeaae fdcba  11111 ,,,,  and 

7,,2,1;0  iki  are constant gains. 

The Lyapunov function is constructed as: 

22222
2

2
1 2

1

2

1

2

1

2

1

2

1

2

1

2

1
f

e
dcba eeeeeeeV   

Using (29), (30) and (31), we find that 

2
7

2
6

2
5

2
4

2
3

2
22

2
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which is negative-definite. Thus, the error dynamical system (29) is globally 

and asymptotically stable at the origin and hence we have, 

0,,,,,, 21 fdcba eeeeeee  as .v  FPS between master system (27) 

and slave system (28) is achieved and the uncertain parameter is also 

identified in the receiver end simultaneously under the controllers given by 

(30) and parameter update law given by (31).  

5. Numerical Simulations 

We now present some numerical simulations carried out using 

Mathematica. 

1. For showing projective synchronization using, we take the initial 

conditions for master system as     0001.00,001.00 21  xx  and the values 

of the parameters are chosen as ,1.0,0025.0,9005.1,01.0  ke  

00005.0,7.3,35.1  E  while the initial conditions for the slave 

system are   .05.0,50 21  yy  Figures 1 and 2 show the time series 

analysis of error variables 1e  and .2e  Figure 3 and 4 show the phase 

portraits of master system and slave system without controls. After the 

controls are added to the slave system, the phase portraits of the projective-

synchronized slave systems for three different cases, 01.0,005.0S  and 

0.02 are superimposed and shown in a single figure 5. Figure 6 and 7 show 

phase portraits of the slave system for 1S  and -1 which correspond to the 

special cases of complete synchronization and anti-synchronization 

respectively. 

2. For showing function projective synchronization, the initial conditions 

and parametric values for the master system are chosen as   ,23.101 x  

  ,79271.3,492778.0,84091.2,106061.0,1.002  dcbax  

.00020593.0f  The initial conditions and the initial values of the uncertain 

parametric values for the slave system are taken as:    ,6.001 y  

        ,829319.00,97324.20,0178394.00,003.00 1112  cbay  

    .0000218038.00,81209.10 11  fd  Phase portrait of the master system 

is given in figure 8 and phase portraits of synchronized slave system for 

different scaling factors is presented in figure 9. Let us choose the value of 
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function   .5vS  Then, the time evolution of the estimated parameters 

11111 ,,,, fdcba  are shown in figures 10 to 14. The time series of the error 

variables 1e  and 2e  are shown in figures 15 and 16. 

  

(a) Figure 1. Time Series Analysis of 

 ve1  under PS 

(b) Figure 2. Time Series Analysis 

of  ve2  under PS 

 
 

(c) Figure 3. Phase Portrait of master 

system (15) 

(d) Figure 4. Phase Portrait of 

slave system (16) (without controls) 
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(e) Figure 5. Phase Portrait of slave 

system with Backstepping method (BM) 

controllers for 005.0S  (blue), 0.01 

(green) and 0.02(red) 

(f) Figure 6. Phase Portrait of slave 

system by BM for 1S  implying 

complete synchronization 

 
 

(g) Figure 7. Phase Portrait of slave 

system by BM for 1S  implying 

antisynchronization 

(h) Figure 8. Phase Portrait of master 

system (27) 

  

(i) Figure 9. Phase Portraits of slave 

system (28) by Adaptive control (AC) for 

  1vS  (black), 0.1 (red), 0.01 (green) 

(j) Figure 10. Time Series Analysis of 

   106061.011  aava   
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(k) Figure 11. Time Series Analysis 

of    84091.211  bbvb   

(l) Figure 12. Time Series Analysis 

of    492778.011  ccvc   

 

 

(m) Figure 13. Time Series Analysis 

of    79271.311  ddvd   

(n) Figure 14. Time Series 

Analysis of   

   00020593.011  ffvf  

 
 

(o) Figure 15. Time Series Analysis 

of  ve1  by AC 

(p) Figure 16. Time Series 

Analysis of  ve2  by AC 
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6. Observations 

1. The simulations for Backstepping Method are presented by figures 1 to 

7. We make the following observations: 

(a) Comparing the phase portraits of the master system given by figure 3 

and those of slave system given by figures 5 to 7, it can be clearly seen that 

not only the two systems (27) and (28) synchronize, they can be made to 

synchronize up to any factor by changing the value of the scaling factor S. 

(b) When ,1S  we achieve complete synchronization while 1S  

leads to anti-synchronization between (27) and (28). Thus, PS is a more 

general synchronization phenomenon and complete synchronization and 

antisynchronization can be obtained as special cases. 

(c) Time evolution of error variables given by figure 1 and 2 imply that we 

are successful in achieving PS between (15) and (16) asymptotically. 

2. The simulations for Adaptive Control Method are presented by figures 

8 to 16. We make the following observations: 

(a) Figure 8 show the phase portrait for modified master system (27) and 

synchronized phase portraits of modified slave system (28) for different 

scaling factors is shown in figure 9. It effectively shows PS is achieved for 

different scaling factors. 

(b) To observe the achievement of FPS, we note that figures 10 to 14 show 

the time evolution of the uncertain parameters 11111 ,,,, fdcba  of the slave 

system and we find that ffddccbbaa  11111 ,,,,  as v  

where fdcba ,,,,  are the certain parametric values of the master system. 

Thus, parameter update law is verified. 

(c) Figures 15 and 16 which show error time analysis, indicate that FPS is 

achieved between the two systems (27) and (28). 

7. Conclusion 

From the numerical simulations, it is clear that both the control methods 

have been successful in achieving PS between the respective master and 

slave system. While comparing their simulations, we note: 
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1. A major advantage of Backstepping control is, it can be applied to any 

dynamical system with first order differential equations, while for Adaptive 

control, modifications were needed to reduce it to the form of (6). 

2. Figure 5 shows phase portraits of synchronized slave system for 

different scaling factors by Backstepping control while figure 9 shows the 

same by Adaptive control. We can clearly see that for the chaotic Dumbbell 

Satellite model, the simulations were better for Backstepping control. 

3. A major advantage of the Adaptive control is, it has an additional 

feature of tackling uncertainties brought in by the time-varying parameters. 

Parameter update laws ensure that eventually the uncertain parameters of 

the slave system tend to the corresponding constant parametric values of the 

master system. Backstepping control does not have this feature. 

4. Also, the error variables of the FPS scheme by Adaptive control 

converge faster to zero than their counterparts under PS scheme by 

Backstepping control. 

So, we can conclude that both the control methods have their advantages 

as well as disadvantages. However, if the model under consideration has 

uncertainties due to parameters, Adaptive control method is a better method. 

Rate of synchronization is also better than backstepping control for this 

model. Whereas, Backstepping control is effective for most of the dynamical 

systems, even under external disturbances, but with certain parameters. It is 

a recursive method and the controllers can be designed step by step 

effectively and the method is gradually extended to larger and larger 

subsystems as needed. PS has been effectively achieved for the chaotic 

Dumbbell Satellite model by both the control methods and numerical 

simulations confirm with the analytical findings. 
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