

m-ZUMKELLER LABELING ALGORITHM FOR JEWEL AND JELLY FISH GRAPH

HARISH PATODIA and HELEN K. SAIKIA

Department of Mathematics Gauhati University Guwahati-781014, India E-mail: harishp956@gmail.com hsaikia@yahoo.com

Abstract

In this paper, we provide algorithms to label jewel graphs and jelly fish graphs by m-Zumkeller numbers.

1. Introduction

A positive integer n is Zumkeller if we can partition the set of all the positive divisors of an integer n into two disjoint subsets such that sum of each partition subset is $\frac{\sigma(n)}{2}$, where $\sigma(n)$ gives the sum of all the positive divisors of n. Various properties of Zumkeller numbers are discuued in [4]. In [3] S. Sriram, R. Govindarajan and K. Thirusangu proved that jewel graph and jelly fish graph are Zumkeller graph.

Generalizing the concept of Zumkeller number H. Patodia and H. K. Saikia defined a new type of number as m-Zumkeller number in [2]. A positive integer n is an m-Zumkeller number if we can partition the set of all the positive divisors of n into two disjoint subsets of equal product.

Let G = (V, E) be a graph. A one-one function $f : V \to N$ is said to be an *m*-Zumkeller labeling of the graph G, if the induced function $f^* : E \to N$

2020 Mathematics Subject Classification: 11Axx, 97F60, 05Cxx.

Received September 7, 2021; Accepted December 4, 2021

Keywords: Perfect Numbers, *m*-Zumkeller numbers, *m*-Zumkeller labeling, Jewel graphs, Jelly Fish graphs.

defined as $f^*(xy) = f(x)f(y)$ is an *m*-Zumkeller number for all $xy \in E$ and $x, y \in V$. A graph is said to be an *m*-Zumkeller graph if it admits an *m*-Zumkeller labeling. In [1] the *m*-Zumkeller labeling of complete bipartite graphs and wheel graphs are discussed. In this paper we prove that jewel graph and jelly fish graph are also *m*-Zumkeller graph.

2. Properties of *m*-Zumkeller numbers

Various properties of m-Zumkeller numbers discussed in [2] are given below-

1. If *n* is an *m*-Zumkeller number, then $\tau(n) \ge 4$, where $\tau(n)$ gives the number of positive divisors of *n*.

2. The integer $n = \prod_{i=1}^{r} p_i^{\alpha_i}$ (where p_i^{s} are distinct primes) is an *m*-Zumkeller number if and only if $4 \mid \alpha_i \tau(n) \forall i = 1, 2, ..., r$.

3. The product of distinct prime numbers i.e. $\prod_{i=1}^{r} p_i$ (where p_i^{s} are distinct primes, $r \ge 2$) are *m*-Zumkeller numbers.

4. The integers of the form $2^k \prod_{i=1}^r p_i$ where k is any positive integer and p_i^{s} are distinct odd primes are *m*-Zumkeller numbers.

Example 2.1. The integers 6, 8, 10, 14, 15, 16, 21, 22, 24 are the first few *m*-Zumkeller numbers.

For 24, the positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. This divisors of 24 can be partitioned into two subsets, $P = \{1, 2, 12, 24\}$ and $Q = \{3, 4, 6, 8\}$ such that the product of all the elements in each subset is 576. Hence, 24 is an *m*-Zumkeller number.

3. Jewel graph J(n)

Definition 3.1. The jewel graph J_n is the graph with vertex set $V(J_n) = \{u, v, x, y, u_i : 1 \le i \le n\}$ and edge set $E(J_n) = \{ux, uy, xy, xv, yv, uu_i, vu_i : 1 \le i \le n\}$.

3.1 *m*-Zumkeller labeling algorithm for jewel graph J(n)

Input. A Jewel graph J_n having n + 4 vertices and 2n + 5 edges.

Output. *m*-Zumkeller jewel graph

Procedure. *mZum_lab_jewel* graph.

 $V\!(J_n) = \{u_i \mid 1 \leqslant i \leqslant n+4\}$ be the vertex set of J_n

 $E(J_n) = \{u_1u_2, \, u_1u_3, \, u_1u_4, \, u_2u_3, \, u_3u_4, \, u_2u_i, \, u_4u_i : 5 \leqslant i \leqslant n+4\} \ \text{ be the edge set of } J_n$

 $p_{1} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{2} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{3} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{4} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{1} \neq p_{2} \neq p_{3} \neq p_{4}$ do
begin $f(u_{2i-1}) = 2p_{1}$ $f(u_{2i+1}) = 2p_{2}$

(-2i+1)

While i = 1

end

for i:1 to 2 do

begin

$$f(u_{2i}) = 2^i p_3$$

 end

for i:1 to n do

begin

$$f(u_{i+4}) = 2^{i+2} p_4$$

end

end *mZum_lob_jewel* graph.

Proposition 3.1. The jewel graph J_n is an m-Zumkeller graph.

Proof. Let J_n be a jewel graph with vertex set

 $V(J_n) = \{u_1, u_2, u_3, u_4, u_{i+4} \mid 1 \leqslant i \leqslant n\} \text{ and edge set}$ $E(J_n) = \{u_1u_2, u_1u_3, u_1u_4, u_2u_3, u_3u_4, u_2u_{i+4}, u_4u_{i+4} : 1 \leqslant i \leqslant n\}.$ Now

$$f^{*}(u_{1}u_{2}) = f(u_{1})f(u_{2}) = (2p_{1})(2p_{3}) = 2^{2}p_{1}p_{3}$$

$$f^{*}(u_{1}u_{3}) = f(u_{1})f(u_{3}) = (2p_{1})(2p_{2}) = 2^{2}p_{1}p_{2}$$

$$f^{*}(u_{1}u_{4}) = f(u_{1})f(u_{4}) = (2p_{1})(2^{2}p_{3}) = 2^{3}p_{1}p_{3}$$

$$f^{*}(u_{2}u_{3}) = f(u_{2})f(u_{3}) = (2p_{3})(2p_{2}) = 2^{2}p_{2}p_{3}$$

$$f^{*}(u_{3}u_{4}) = f(u_{3})f(u_{4}) = (2p_{2})(2^{2}p_{3}) = 2^{3}p_{2}p_{3}$$

$$f^{*}(u_{2}u_{i+4}) = f(u_{2})f(u_{i+4}) = (2p_{3})(2^{i+2}p_{4}) = 2^{i+3}p_{3}p_{4}$$

$$f^{*}(u_{4}u_{i+4}) = f(u_{4})f(u_{i+4}) = (2^{2}p_{3})(2^{i+2}p_{4}) = 2^{i+4}p_{3}p_{4}.$$

Hence we have seen that each edge of the jewel graph has an *m*-Zumkeller label on it. Thus the jewel graph J_n is an *m*-Zumkeller graph. \Box

Example 3.1. The Jewel graph J_2 is an *m*-Zumkeller graph for $p_1 = 3, p_2 = 5, p_3 = 7$ and $p_4 = 11$ which is shown in figure 1.

4. Jelly fish graph J(m, n)

Definition 4.1. The Jelly Fish graph J(m, n) is obtained from a 4-cycle u_1, u_2, u_3, u_4 by joining u_1 and u_3 with an edge and appending m pendent edges to u_2 and n pendent edges to u_4 .

Figure 1. *m*-Zumkeller labeling of J_2 .

4.1 *m*-Zumkeller labeling algorithm for jelly fish graph J(m, n)

Input. A Jelly Fish graph J(m, n) having m + n + 4 vertices and m + n + 5 edges.

Output. *m*-Zumkeller jelly fish graph.

Procedure. mZum_lab_jelly fish graph.

 $V(J(m, n)) = \{u_i : 1 \leq i \leq 4, v_i : 1 \leq i \leq m, v'_i : 1 \leq i \leq n\}$ be the vertex set of J(m, n)

 $E(J(m, n)) = \{u_1u_2, u_1u_3, u_1u_4, u_2u_3, u_3u_4, u_2v_i : 1 \le i \le m, u_4v'_i : 1 \le i \le n\}.$ be the edge set of J(m, n)

 $p_{1} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{2} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{3} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{4} \coloneqq a \text{ prime number } \neq 2 \leqslant 13$ $p_{1} \neq p_{2} \neq p_{3} \neq p_{4}$ do
begin

$$f(u_{2i-1}) = 2p_1$$

 $f(u_{2i+1}) = 2p_2$

```
While i = 1
end
for i : 1 to 2 do
begin
f(u_{2i}) = 2^i p_3
```

end

for i:1 to m do

begin

$$f(v_i) = 2^i p_2$$

end

for i:1 to n do

begin

$$f(v_i') = 2^i p_4$$

end *mZum_lab_jelly* fish graph.

Proposition 4.1. The jelly fish graph J(m, n) is an m-Zumkeller graph.

Proof. Let J(m, n) be a jelly fish graph with vertex set

 $V(J(m, n)) = \{u_i : 1 \le i \le 4, v_i : 1 \le i \le m, v'_i : 1 \le i \le n\} \text{ and edge set}$ $E(J(m, n)) = \{u_1u_2, u_1u_3, u_1u_4, u_2u_3, u_3u_4, u_2v_i : 1 \le i \le m, u_4v'_i : 1 \le i \le n\}.$

Now

$$f^{*}(u_{1}u_{2}) = f(u_{1})f(u_{2}) = (2p_{1})(2p_{3}) = 2^{2}p_{1}p_{3}$$

$$f^{*}(u_{1}u_{3}) = f(u_{1})f(u_{3}) = (2p_{1})(2p_{2}) = 2^{2}p_{1}p_{2}$$

$$f^{*}(u_{1}u_{4}) = f(u_{1})f(u_{4}) = (2p_{1})(2^{2}p_{3}) = 2^{3}p_{1}p_{3}$$

$$f^{*}(u_{2}u_{3}) = f(u_{2})f(u_{3}) = (2p_{3})(2p_{2}) = 2^{2}p_{2}p_{3}$$

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022

450

$$f^*(u_3u_4) = f(u_3)f(u_4) = (2p_2)(2^2p_3) = 2^3p_2p_3$$

$$f^*(u_2v_i) = f(u_2)f(v_i) = (2p_3)(2^ip_2) = 2^{i+1}p_2p_3$$

$$f^*(u_4v_i') = f(u_4)f(v_i') = (2^2p_3)(2^ip_4) = 2^{i+2}p_3p_4.$$

Hence we have seen that each edge of the jewel graph has an *m*-Zumkeller label on it. Thus the jewel graph J_n is an *m*-Zumkeller graph. \Box

Example 4.1. The Jelly Fish graph J(4, 5) is an *m*-Zumkeller graph, its *m*-Zumkeller labeling with $p_1 = 3$, $p_2 = 5$, $p_3 = 7$, $p_4 = 13$ is shown in figure 2.

Figure 2. *m*-Zumkeller labeling of J(4, 5).

References

- H. Patodia and H. K. Saikia, m-Zumkeller Graphs, Advances in Mathematics: Scientific Journal 9(7) (2020), 4687-4694.
- [2] H. Patodia and H. K. Saikia, On *m*-Zumkeller Numbers, Bulletin of Calcutta Mathematical Society 113(1) (2021), 53-60.
- [3] S. Sriram, R. Govindarajan and K. Thirusangu, Zumkeller labeling of jewel graph and jelly fish graph, Journal of Information and Computational Science 9(12) (2019), 725-731.
- [4] Yuejian Peng and K. P. S. Bhaskara Rao, On Zumkeller numbers, Journal of Number Theory 133 (2013), 1135-1155.