m-ZUMKELLER LABELING ALGORITHM FOR JEWEL AND JELLY FISH GRAPH

HARISH PATODIA and HELEN K. SAIKIA

Department of Mathematics
Gauhati University
Guwahati-781014, India
E-mail: harishp956@gmail.com
hsaikia@yahoo.com

Abstract

In this paper, we provide algorithms to label jewel graphs and jelly fish graphs by m Zumkeller numbers.

1. Introduction

A positive integer n is Zumkeller if we can partition the set of all the positive divisors of an integer n into two disjoint subsets such that sum of each partition subset is $\frac{\sigma(n)}{2}$, where $\sigma(n)$ gives the sum of all the positive divisors of n. Various properties of Zumkeller numbers are discuued in [4]. In [3] S. Sriram, R. Govindarajan and K. Thirusangu proved that jewel graph and jelly fish graph are Zumkeller graph.

Generalizing the concept of Zumkeller number H. Patodia and H. K. Saikia defined a new type of number as m-Zumkeller number in [2]. A positive integer n is an m-Zumkeller number if we can partition the set of all the positive divisors of n into two disjoint subsets of equal product.

Let $G=(V, E)$ be a graph. A one-one function $f: V \rightarrow N$ is said to be an m-Zumkeller labeling of the graph G, if the induced function $f^{*}: E \rightarrow N$ 2020 Mathematics Subject Classification: 11Axx, 97F60, 05Cxx.
Keywords: Perfect Numbers, m-Zumkeller numbers, m-Zumkeller labeling, Jewel graphs, Jelly Fish graphs.
Received September 7, 2021; Accepted December 4, 2021
defined as $f^{*}(x y)=f(x) f(y)$ is an m-Zumkeller number for all $x y \in E$ and $x, y \in V$. A graph is said to be an m-Zumkeller graph if it admits an m Zumkeller labeling. In [1] the m-Zumkeller labeling of complete bipartite graphs and wheel graphs are discussed. In this paper we prove that jewel graph and jelly fish graph are also m-Zumkeller graph.

2. Properties of \boldsymbol{m}-Zumkeller numbers

Various properties of m-Zumkeller numbers discussed in [2] are given below-

1 . If n is an m-Zumkeller number, then $\tau(n) \geq 4$, where $\tau(n)$ gives the number of positive divisors of n.
2. The integer $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ (where $p_{i}^{\prime s}$ are distinct primes) is an m Zumkeller number if and only if $4 \mid \alpha_{i} \tau(n) \forall i=1,2, \ldots, r$.
3. The product of distinct prime numbers i.e. $\prod_{i=1}^{r} p_{i}$ (where $p_{i}^{\prime s}$ are distinct primes, $r \geq 2$) are m-Zumkeller numbers.
4. The integers of the form $2^{k} \prod_{i=1}^{r} p_{i}$ where k is any positive integer and $p_{i}^{\prime s}$ are distinct odd primes are m-Zumkeller numbers.

Example 2.1. The integers $6,8,10,14,15,16,21,22,24$ are the first few m-Zumkeller numbers.

For 24 , the positive divisors of 24 are $1,2,3,4,6,8,12,24$. This divisors of 24 can be partitioned into two subsets, $P=\{1,2,12,24\}$ and $Q=\{3,4,6,8\}$ such that the product of all the elements in each subset is 576 . Hence, 24 is an m-Zumkeller number.

3. Jewel graph $J(n)$

Definition 3.1. The jewel graph J_{n} is the graph with vertex set $V\left(J_{n}\right)$ $=\left\{u, v, x, y, u_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(J_{n}\right)=\left\{u x, u y, x y, x v, y v, u u_{i}, v u_{i}\right.$ $: 1 \leq i \leq n\}$.

3.1 m-Zumkeller labeling algorithm for jewel graph $J(n)$

Input. A Jewel graph J_{n} having $n+4$ vertices and $2 n+5$ edges.
Output. m-Zumkeller jewel graph
Procedure. m Zum_lab_jewel graph.
$V\left(J_{n}\right)=\left\{u_{i} \mid 1 \leqslant i \leqslant n+4\right\}$ be the vertex set of J_{n}
$E\left(J_{n}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{3} u_{4}, u_{2} u_{i}, u_{4} u_{i}: 5 \leqslant i \leqslant n+4\right\}$ be the edge set of J_{n}
$p_{1}:=a$ prime number $\neq 2 \leqslant 13$
$p_{2}:=a$ prime number $\neq 2 \leqslant 13$
$p_{3}:=a$ prime number $\neq 2 \leqslant 13$
$p_{4}:=a$ prime number $\neq 2 \leqslant 13$
$p_{1} \neq p_{2} \neq p_{3} \neq p_{4}$
do
begin

$$
f\left(u_{2 i-1}\right)=2 p_{1}
$$

$$
f\left(u_{2 i+1}\right)=2 p_{2}
$$

While $i=1$
end
for $i: 1$ to 2 do
begin

$$
f\left(u_{2 i}\right)=2^{i} p_{3}
$$

end
for $i: 1$ to n do
begin

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022

$$
f\left(u_{i+4}\right)=2^{i+2} p_{4}
$$

end
end $m Z u m _l o b _j e w e l$ graph.
Proposition 3.1. The jewel graph J_{n} is an m-Zumkeller graph.
Proof. Let J_{n} be a jewel graph with vertex set
$V\left(J_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{i+4} \mid 1 \leqslant i \leqslant n\right\}$ and edge set
$E\left(J_{n}\right)=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{3} u_{4}, u_{2} u_{i+4}, u_{4} u_{i+4}: 1 \leqslant i \leqslant n\right\}$.
Now
$f^{*}\left(u_{1} u_{2}\right)=f\left(u_{1}\right) f\left(u_{2}\right)=\left(2 p_{1}\right)\left(2 p_{3}\right)=2^{2} p_{1} p_{3}$
$f^{*}\left(u_{1} u_{3}\right)=f\left(u_{1}\right) f\left(u_{3}\right)=\left(2 p_{1}\right)\left(2 p_{2}\right)=2^{2} p_{1} p_{2}$
$f^{*}\left(u_{1} u_{4}\right)=f\left(u_{1}\right) f\left(u_{4}\right)=\left(2 p_{1}\right)\left(2^{2} p_{3}\right)=2^{3} p_{1} p_{3}$
$f^{*}\left(u_{2} u_{3}\right)=f\left(u_{2}\right) f\left(u_{3}\right)=\left(2 p_{3}\right)\left(2 p_{2}\right)=2^{2} p_{2} p_{3}$
$f^{*}\left(u_{3} u_{4}\right)=f\left(u_{3}\right) f\left(u_{4}\right)=\left(2 p_{2}\right)\left(2^{2} p_{3}\right)=2^{3} p_{2} p_{3}$
$f^{*}\left(u_{2} u_{i+4}\right)=f\left(u_{2}\right) f\left(u_{i+4}\right)=\left(2 p_{3}\right)\left(2^{i+2} p_{4}\right)=2^{i+3} p_{3} p_{4}$
$f^{*}\left(u_{4} u_{i+4}\right)=f\left(u_{4}\right) f\left(u_{i+4}\right)=\left(2^{2} p_{3}\right)\left(2^{i+2} p_{4}\right)=2^{i+4} p_{3} p_{4}$.
Hence we have seen that each edge of the jewel graph has an m Zumkeller label on it. Thus the jewel graph J_{n} is an m-Zumkeller graph.

Example 3.1. The Jewel graph J_{2} is an m-Zumkeller graph for $p_{1}=3, p_{2}=5, p_{3}=7$ and $p_{4}=11$ which is shown in figure 1 .

4. Jelly fish graph $J(m, n)$

Definition 4.1. The Jelly Fish graph $J(m, n)$ is obtained from a 4 -cycle $u_{1}, u_{2}, u_{3}, u_{4}$ by joining u_{1} and u_{3} with an edge and appending m pendent edges to u_{2} and n pendent edges to u_{4}.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 2, December 2022

Figure 1. m-Zumkeller labeling of J_{2}.

$4.1 \mathbf{m}$-Zumkeller labeling algorithm for jelly fish graph $J(m, n)$

Input. A Jelly Fish graph $J(m, n)$ having $m+n+4$ vertices and $m+n+5$ edges.

Output. m-Zumkeller jelly fish graph.
Procedure. m Zum_lab_jelly fish graph.
$V(J(m, n))=\left\{u_{i}: 1 \leqslant i \leqslant 4, v_{i}: 1 \leqslant i \leqslant m, v_{i}^{\prime}: 1 \leqslant i \leqslant n\right\}$ be the vertex set of $J(m, n)$
$E(J(m, n))=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{3} u_{4}, u_{2} v_{i}: 1 \leqslant i \leqslant m, u_{4} v_{i}^{\prime}: 1 \leqslant i \leqslant n\right\}$. be the edge set of $J(m, n)$

$$
\begin{aligned}
& p_{1}:=a \text { prime number } \neq 2 \leqslant 13 \\
& p_{2}:=a \text { prime number } \neq 2 \leqslant 13 \\
& p_{3}:=a \text { prime number } \neq 2 \leqslant 13 \\
& p_{4}:=a \text { prime number } \neq 2 \leqslant 13 \\
& p_{1} \neq p_{2} \neq p_{3} \neq p_{4} \\
& \text { do } \\
& \text { begin }
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=2 p_{1} \\
& f\left(u_{2 i+1}\right)=2 p_{2}
\end{aligned}
$$

While $i=1$
end
for $i: 1$ to 2 do
begin

$$
f\left(u_{2 i}\right)=2^{i} p_{3}
$$

end
for $i: 1$ to m do
begin

$$
f\left(v_{i}\right)=2^{i} p_{2}
$$

end
for $i: 1$ to n do
begin

$$
f\left(v_{i}^{\prime}\right)=2^{i} p_{4}
$$

end $m Z u m _l a b _j e l l y$ fish graph.
Proposition 4.1. The jelly fish graph $J(m, n)$ is an m-Zumkeller graph.
Proof. Let $J(m, n)$ be a jelly fish graph with vertex set
$V(J(m, n))=\left\{u_{i}: 1 \leqslant i \leqslant 4, v_{i}: 1 \leqslant i \leqslant m, v_{i}^{\prime}: 1 \leqslant i \leqslant n\right\}$ and edge set $E(J(m, n))=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{3} u_{4}, u_{2} v_{i}: 1 \leqslant i \leqslant m, u_{4} v_{i}^{\prime}: 1 \leqslant i \leqslant n\right\}$.

Now
$f^{*}\left(u_{1} u_{2}\right)=f\left(u_{1}\right) f\left(u_{2}\right)=\left(2 p_{1}\right)\left(2 p_{3}\right)=2^{2} p_{1} p_{3}$
$f^{*}\left(u_{1} u_{3}\right)=f\left(u_{1}\right) f\left(u_{3}\right)=\left(2 p_{1}\right)\left(2 p_{2}\right)=2^{2} p_{1} p_{2}$
$f^{*}\left(u_{1} u_{4}\right)=f\left(u_{1}\right) f\left(u_{4}\right)=\left(2 p_{1}\right)\left(2^{2} p_{3}\right)=2^{3} p_{1} p_{3}$
$f^{*}\left(u_{2} u_{3}\right)=f\left(u_{2}\right) f\left(u_{3}\right)=\left(2 p_{3}\right)\left(2 p_{2}\right)=2^{2} p_{2} p_{3}$

$$
\begin{aligned}
& f^{*}\left(u_{3} u_{4}\right)=f\left(u_{3}\right) f\left(u_{4}\right)=\left(2 p_{2}\right)\left(2^{2} p_{3}\right)=2^{3} p_{2} p_{3} \\
& f^{*}\left(u_{2} v_{i}\right)=f\left(u_{2}\right) f\left(v_{i}\right)=\left(2 p_{3}\right)\left(2^{i} p_{2}\right)=2^{i+1} p_{2} p_{3} \\
& f^{*}\left(u_{4} v_{i}^{\prime}\right)=f\left(u_{4}\right) f\left(v_{i}^{\prime}\right)=\left(2^{2} p_{3}\right)\left(2^{i} p_{4}\right)=2^{i+2} p_{3} p_{4} .
\end{aligned}
$$

Hence we have seen that each edge of the jewel graph has an mZumkeller label on it. Thus the jewel graph J_{n} is an m-Zumkeller graph.

Example 4.1. The Jelly Fish graph $J(4,5)$ is an m-Zumkeller graph, its m-Zumkeller labeling with $p_{1}=3, p_{2}=5, p_{3}=7, p_{4}=13$ is shown in figure 2.

Figure 2. m-Zumkeller labeling of $J(4,5)$.

References

[1] H. Patodia and H. K. Saikia, m-Zumkeller Graphs, Advances in Mathematics: Scientific Journal 9(7) (2020), 4687-4694.
[2] H. Patodia and H. K. Saikia, On m-Zumkeller Numbers, Bulletin of Calcutta Mathematical Society 113(1) (2021), 53-60.
[3] S. Sriram, R. Govindarajan and K. Thirusangu, Zumkeller labeling of jewel graph and jelly fish graph, Journal of Information and Computational Science 9(12) (2019), 725-731.
[4] Yuejian Peng and K. P. S. Bhaskara Rao, On Zumkeller numbers, Journal of Number Theory 133 (2013), 1135-1155.

