

QUANTUM CODES OVER $\mathbb{Z}_{\rho} + \tilde{\xi}\mathbb{Z}_{\rho}$

SWATI KHARUB¹, SONIKA AHLAWAT² and DALIP SINGH³

^{1,2,3}Department of Mathematics Maharshi Dayanand University Rohtak, Haryana 124001, India E-mail: sahlawat1495@gmail.com dsmdur@gmail.com

Abstract

This paper gives the construction of quantum codes by using $(\rho - 1 + 2\tilde{\xi})$ -constacyclic codes over $\mathbb{Z}_{\rho} + \tilde{\xi}\mathbb{Z}_{\rho}$ with $\tilde{\xi}^2 = \tilde{\xi}$ with the help of a well defined gray map. A family of quantum error-correcting codes obtained from Calderbank-Shor-Steane (CSS) construction is applied to $(\rho - 1 + 2\tilde{\xi})$ -constacyclic codes over $\mathbb{Z}_{\rho} + \tilde{\xi}\mathbb{Z}_{\rho}$. Finally, the parameters of associated quantum error-correcting codes are derived. Some examples of quantum codes of arbitrary length are also obtained as an application of obtained results.

1. Introduction

Quantum error-correction plays a crucial role in quantum computation and communication. The most efficient way to control decoherence is by using quantum error-correcting codes. Rapid development has been observed in recent years in the field of quantum error-correction. In [7], Ashraf and Mohammad designed a method to obtain the self-orthogonal codes over the field F_3 by constructing a Gray map of linear and cyclic codes over a finite semi-local non-chain ring $F_3 + vF_3$ with $v^2 = 1$. The necessary and sufficient condition is also provided for the cyclic codes over the ring considered ring that contains its dual. This work was further extended over the commutative

²⁰²⁰ Mathematics Subject Classification: 94B05, 94B15, 94B35, 94B60. Keywords: Cyclic codes, gray map, constacyclic codes, quantum codes. ¹Corresponding author; E-mail: swatikharb0001@gmail.com Received: January 28, 2022; Accepted April 15-2022

non-chain ring $F_p + vF_p$ with $v^2 = v$ in [6] and some main results are described on the linear and cyclic codes which are used to obtain the quantum codes over this ring. L_i and X_{μ} [9], studied the construction of q-ary quantum maximal distance separable (MDS) codes having parameters $[n, n-4, 3]_q$ with $4 \le n \le q^2 + 1$ by using Hermitian self-orthogonal codes over the field F_{q^2} . In [1], Steane presented a method for finding the good quantum error-correcting codes. Classical codes are used to get the codes for up to 16 information qubits with the correction of small number of errors. Kai and Zhu [13], considered the self-orthogonal codes over the finite field F_4 which are used to derive the quantum codes. A method to obtain the Hermitian selforthogonal is also provided over F_4 as the gray map of linear codes over $F_4 + uF_4$. In [11], the authors introduced the concept of Gray images from $F_p + vF_p$ to F_{p^2} and obtained the (1-2v)-constacyclic codes of length n and determines their dual codes. BCH codes that contains dual 1 codes are used to derive the quantum stabilizer codes in [10]. Further, it has been proved that a BCH code of length *n* contain its dual only if its designed distance is $o(\sqrt{n})$ and the convex is derived in case of narrow-sense codes. Results are provided to make it possible to detemine the parameters of quantum BCH codes in terms of their design parameters. In [2], Calderbank, et al. transformed the problem of obtaining the quantum error-correcting codes onto the problem of deriving the additive codes over the field GF(4)which are self-orthogonal with respect to a certain trace inner product. A table of lower and upper bounds on these codes is provided of length up to 30 qubits. Qian et al. in [5] described a new method of finding the selforthogonal codes over the finite field F_2 and on the basis of this method, quantum error-correcting codes are constructed from the cyclic codes over $F_2 + uF_2$. In [4], a new method is used to construct the quantum errorcorrecting codes from the cyclic codes over the ring $F_2 + vF_2$. Moreover, in [3] construction of some non-binary quantum codes from u-constacyclic codes over $F_p + uF_p$ is given by Gao and Wang. Recently, Ashraf and Mohammad gave the construction of quantum codes using cyclic codes over the ring

 $F_p[u, v]$ where $u^2 = 1, v^3 = v, uv = vu$ in [8]. Using classical cyclic codes many good quantum codes are being constructed.

In this paper, quantum codes obtained through $(\rho - 1 + 2\tilde{\xi})$ -constacyclic codes over $\mathbb{Z}_{\rho} + \tilde{\xi}\mathbb{Z}_{\rho}$. Section 1, describes the preliminaries consists of fundamental properties. Section 2, incorporates Gray map from $\mathbb{Z}_{\rho} + \zeta\mathbb{Z}_{\rho}$ to \mathbb{Z}_{ρ}^2 and the development of said codes are presented in Section 3, which is illustrated using examples in Section 4.

2. Preliminaries

The ring

$$\begin{split} R &= \mathbb{Z}_{\rho} + \widetilde{\xi} \mathbb{Z}_{\rho} = \{0, 1, \dots, \rho - 1, \widetilde{\xi}, 2\widetilde{\xi}, \dots, (\rho - 1)\widetilde{\xi} \\ \\ &1 + \widetilde{\xi}, 1 + 2\widetilde{\xi}, 2 + \widetilde{\xi}, \dots, \rho - 1 + (\rho - 1)\widetilde{\xi} \}, \end{split}$$

where ρ is an odd prime and $\tilde{\xi}^2 = \tilde{\xi}$ is semi-local, commutative, non-chain ring consisting of ρ^2 elements, characteristic ρ , where $(\rho-1)+2\tilde{\xi}$ is a unit of R.

The two maximal ideals of the ring are precisely

$$\langle \widetilde{\xi} \rangle$$
,

and

```
\langle 1 - \widetilde{\xi} \rangle.
```

It is discernible that $R/\langle \tilde{\xi} \rangle$, $R/\langle 1-\tilde{\xi} \rangle$ are isomorphic with \mathbb{Z}_{ρ} . Chinese Remainder Theorem allows us to express R as $R \cong \langle \tilde{\xi} \rangle \oplus \langle 1-\tilde{\xi} \rangle \cong \mathbb{Z}_{\rho} \oplus \mathbb{Z}_{\rho}$.

Also, every element $\alpha + \widetilde{\xi}\beta$ of this ring can be uniquely expressed as $\alpha + \widetilde{\xi}\beta = (\alpha + \beta)(\widetilde{\xi}) + (\alpha)(1 - \widetilde{\xi})$ for all $\alpha, \beta \in \mathbb{Z}_{\rho}$.

A nonempty subset \mathcal{K} of \mathbb{R}^m is a linear code over \mathbb{R} of length m. If \mathcal{K} is an

R-submodule of \mathbb{R}^m and the elements of \mathcal{K} are codewords. Let \mathcal{K} be a code over \mathbb{R} of length m and its polynomial representation be $T(\mathcal{K})$, that is,

$$T(\mathcal{K}) = \left\{ \sum_{i=0}^{m-1} \chi_i^{\dagger^i} \mid (\chi_0, \chi_1, \dots, \chi_{m-1}) \in \mathcal{K} \right\}$$

Let Υ , Λ and \mho are the maps from \mathbb{R}^m to \mathbb{R}^m defined as

$$\Upsilon(\chi_0, \chi_1, \dots, \chi_{m-1}) = (\chi_{m-1}, \chi_0, \dots, \chi_{m-2}),$$
$$\Lambda(\chi_0, \chi_1, \dots, \chi_{m-1}) = (-\chi_{m-1}, \chi_0, \dots, \chi_{m-2}),$$
$$\mho(\chi_0, \chi_1, \dots, \chi_{m-1}) = (\vartheta\chi_{m-1}, \chi_0, \dots, \chi_{m-2}),$$

respectively. Then \mathcal{K} is a cyclic, negacyclic and 9-constacyclic if $\Upsilon(\mathcal{K}) = \mathcal{K}, \Lambda(\mathcal{K})$ and $\mathcal{O}(\mathcal{K}) = \mathcal{K}$ respectively. A code \mathcal{K} over R of length m is cyclic, negacyclic and 9-constacyclicif and only if $T(\mathcal{K})$ is an ideal of $R[y]/\langle \dagger^m - 1 \rangle, R[y]/\langle \dagger^m + 1 \rangle$ and $R[y]/\langle \dagger^m - 9 \rangle$ respectively.

For the arbitrary elements $\chi = (\chi_0, \chi_1, ..., \chi_{m-1})$ and $\nu = (\nu_0, \nu_1, ..., \nu_{m-1})$ of *R*, the inner product is defined as

$$\chi \cdot \nu = (\chi_0 \nu_0 + \chi_1 \nu_1 + \dots + \chi_{m-1} \nu_{m-1}).$$

If $\chi \cdot \nu = 0$, then χ and ϑ are orthogonal. If \mathcal{K} is a linear code over R of length m, then the dual code of \mathcal{K} is defined as

$$\mathcal{K}^{\perp} = \{ \chi \in \mathbb{R}^m : \chi \cdot \nu = 0 \text{ for all } \nu \in \mathcal{K} \}.$$

which is also a linear code over the ring *R* of length *m*. A code \mathcal{K} is said to be self orthogonal if $\mathcal{K} \subseteq \mathcal{K}^{\perp}$ and said to be self dual if $\mathcal{K} = \mathcal{K}^{\perp}$.

3. Gray Map Over R

The hamming weight $w_H(\chi)$ for any codeword $\chi = (\chi_0, \chi_1, ..., \chi_{m-1}) \in \mathbb{R}^m$ is defined as the number of non-zero components in $\chi = (\chi_0, \chi_1, ..., \chi_{m-1})$. The minimum weight of a code \mathcal{K} , that is, $w_H(\mathcal{K})$ is

the least weight among all of its non zero codewords. The Hamming distance between two codes $\chi = (\chi_0, \chi_1, ..., \chi_{m-1})$ and $\hat{\chi} = (\hat{\chi}_0, \hat{\chi}_1, ..., \hat{\chi}_{m-1})$ of R^m , denoted by $d_H(\chi, \hat{\chi}) = w_H(\chi - \hat{\chi})$ and is defined as

$$d_H(\chi, \hat{\chi}) = |\{i \mid \chi_i \neq \hat{\chi}_i\}|$$

Minimum distance of \mathcal{K} , denoted by d_H and is given by minimum distance between the different pairs of codewords of the linear code \mathcal{K} . For any codeword $\chi = (\chi_0, \chi_1, \dots, \chi_{m-1}) \in \mathbb{R}^m$, the lee weight is defined as $w_L(\chi) = \sum_{i=0}^{m-1} w_L(\chi_i)$ and lee distance of $(\chi - \hat{\chi})$ is given by $d_L(\chi, \hat{\chi}) = w_L(\chi - \hat{\chi}) = \sum_{i=0}^{m-1} w_L(\chi_i - \hat{\chi}_i).$

Minimum lee distance of \mathcal{K} is denoted by d_L and is given by minimum lee distance of different pairs of codewords of the linear code \mathcal{K} .

The map $\psi: R$ to \mathbb{Z}^2_{ρ} as

$$\psi(\eta_1 + \widetilde{\xi}\eta_2) = (\eta_1, \eta_1 + \eta_2),$$

with $\eta_1 + \widetilde{\xi} \eta_2 \in R$ is the gray map and can be extended from $R^m \to \mathbb{Z}_p^{2m}$ as

 $\psi(\alpha_1, \alpha_2, \alpha_3, \dots \alpha_{m-1}) = (\eta_1, \eta_1 + \eta_1, \eta_2, \eta_2 + \eta_2, \dots \eta_{m-1}, \eta_1 + \eta_{m-1}),$ where $\alpha_i = \eta_i + \tilde{\xi}\eta_i$ for all $0 \le i \le m - 1$.

Proposition 3.1. The Gray map ψ is a linear and distance preserving isometry map from (\mathbb{R}^m, d_L) to $(\mathbb{Z}_{\rho}^{2m}, d_H)$.

Throughout the text, the code \mathfrak{E} is considered to be a linear code of length m over R.

Proposition 3.2. For a linear self orthogonal code \mathfrak{E} so is $\psi(\mathfrak{E})$.

Proof. Consider a self orthogonal code \mathfrak{E} and $\eta_1, \eta_2 \in \mathfrak{E}$ with $\eta_1 = \xi_1 + \widetilde{\xi} \varpi_1$ and $\eta_2 = \xi_2 + \widetilde{\xi} \varpi_2$, where $\xi_1, \xi_2, \varpi_1, \varpi_2 \in \mathbb{Z}_{\rho}$.

620 SWATI KHARUB, SONIKA AHLAWAT and DALIP SINGH

By self orthogonality of η_1 , η_2 we have η_1 . $\eta_2 = 0$, that is, $\xi_1\xi_2 + \xi(\varpi_1\varpi_2 + \xi_1\varpi_2 + \xi_2\varpi_1) = 0$, it follow that $\xi_1\xi_2 = \varpi_1\varpi_2 + \xi_1\varpi_2$ $+\xi_2\varpi_1 = 0$. Now, applying ψ on η_1 , η_2 we have

$$\psi(\eta_1). \ \psi(\eta_2) = (\xi_1, \ \xi_1 + \varpi_1)(\xi_2, \ \xi_2 + \varpi_2) = (2\xi_1\xi_2 + \xi_1\varpi_2 + \xi_2\varpi_1 + \varpi_1\varpi_2) = 0,$$

which implies $\psi(\mathfrak{E})$ is self orthogonal.

4. Quantum Codes Through $(\rho - 1 + 2\tilde{\xi})$ -Constacyclic Codes Over *R*

For a linear code \mathfrak{E} ,

$$\mathfrak{E}_1 = \{ a \in \mathbb{Z}_0^m \mid \text{for some } b \in \mathbb{Z}_0^m \text{ such that } (a + b\widetilde{\xi}) \in \mathfrak{E} \}$$

and

$$\mathfrak{E}_2 = \{a + b \in \mathbb{Z}_{\rho}^m \mid \text{such that } (a + b\widetilde{\xi}) \in \mathfrak{E}\},\$$

are $\sigma\text{-}ary$ codes such that

$$(1 - \widetilde{\xi})\mathfrak{E}_1 = \mathfrak{E}, \operatorname{mod}(\widetilde{\xi}),$$

and

$$(\widetilde{\xi})\mathfrak{E}_2 = \mathfrak{E}, \mod(1-\widetilde{\xi})$$

Therefore, \mathfrak{E}_1 and \mathfrak{E}_2 are the linear $[m, k_1, d_1]$ and $[m, k_2, d_2]$ codes over \mathbb{Z}_{ρ} respectively. Moreover,

$$\mathfrak{E} = (1 - \widetilde{\xi})\mathfrak{E}_1 \oplus (\widetilde{\xi})\mathfrak{E}_2,$$

and

$$|\mathfrak{E}| = |\mathfrak{E}_1||\mathfrak{E}_2|.$$

Further, $\psi(\mathfrak{E})$ is a σ -ary linear $[2m, k_1 + k_2, \min(d_1, d_2)]$ code.

Theorem 4.1. The code \mathfrak{E} is $(\rho - 1 + 2\widetilde{\xi})$ -constacyclic if and only if \mathfrak{E}_1 is negacyclic and \mathfrak{E}_2 is cyclic over \mathbb{Z}_{ρ} .

621

Proof. For any $\dot{a} = (\dot{a}_0, \dot{a}_1, \dots \dot{a}_{m-1}) \in \mathfrak{E}_1$, and $\dot{b} = (\dot{b}_0, \dot{b}_1, \dots \dot{b}_{m-1}) \in \mathfrak{E}_2$. For an arbitrary element $\zeta_i = (1 - \tilde{\xi})\dot{a}_i + (\tilde{\xi})\dot{b}_i$, where $\dot{a}_i, \dot{b}_i \in \mathbb{Z}_p$ for $i = 0, 1, \dots, m-1$.

Let
$$\zeta = (\zeta_0, \zeta_1, \dots, \zeta_{m-1}) \in \mathfrak{E}$$
.
For $(\rho - 1 + 2\tilde{\xi})$ -constacyclic code \mathfrak{E} ,
 $\mathfrak{O}(\zeta) = (\rho - 1 + 2\tilde{\xi})\zeta_{m-1}, \zeta_0, \dots, \zeta_{m-2})$
 $= ((\rho - 1 + 2\tilde{\xi})a_{m-1} + \tilde{\xi}(\rho - 1)b_{m-1} + 2\tilde{\xi}(1 - \tilde{\xi})a_{m-1} + 2\tilde{\xi}b_{m-1}, (1 - \tilde{\xi})\dot{\alpha}_0 + \tilde{\xi}\dot{\beta}_0, \dots, (1 - \tilde{\xi})a_{m-2} + \tilde{\xi}b_{m-2})$
 $= (1 - \tilde{\xi})\Lambda(\dot{a}) + \tilde{\xi}\Upsilon(\dot{b}),$

which is in \mathfrak{E} . Therefore, \mathfrak{E}_1 and \mathfrak{E}_2 are negacyclic and cyclic codes over \mathbb{Z}_{ρ} respectively with length m. Again, if \mathfrak{E}_1 and \mathfrak{E}_2 are negacyclic and cyclic code over \mathbb{Z}_{ρ} , respectively, with length m, then for any $\zeta = (\zeta_0, \zeta_1, ..., \zeta_{m-1}) \in \mathfrak{E}$ where $\zeta_i = (1 - \tilde{\xi})\dot{a}_i + \tilde{\xi}\dot{b}_i$, and $\dot{a}_i, \dot{b}_i \in \mathbb{Z}_{\rho}$ for i = 0, 1, ..., m-1.

If \mathfrak{E}_1 is a negacyclic code and \mathfrak{E}_2 is a cyclic code over the ring \mathbb{Z}_{ρ} of length m, then $\Lambda(\dot{a}) \in \mathfrak{E}_1$, $\Upsilon(\dot{b}) \in \mathfrak{E}_2$.

So, $(1 - \widetilde{\xi})\Lambda(\dot{a}) + \widetilde{\xi}\Upsilon(\dot{b}) \in \mathfrak{E}$, where $\mho(\zeta) = (1 - \widetilde{\xi})\Lambda(\dot{a}) + (\widetilde{\xi})\Upsilon(\dot{b})$. Thus, $\mho(\zeta) \in \mathfrak{E}$. Hence, \mathfrak{E} is a $(\rho - 1 + 2\widetilde{\xi})$ -constacyclic code.

Lemma 4.2. For a $(\rho - 1 + 2\tilde{\xi})$ -constacyclic code \mathfrak{E}

$$\mathfrak{E} = \langle (1 - \widetilde{\xi})g_1(\dagger), \ \widetilde{g}_2(\dagger) \rangle = \langle (1 - \widetilde{\xi})g_1(\dagger) + \widetilde{\xi}g_2(\dagger) \rangle,$$

with $|\mathfrak{E}| = p^{2m-\deg(g_1(\dagger))-\deg(g_2(\dagger))}$, where polynomials $g_i(\dagger)$ generates $\mathfrak{E}_i, i = 1, 2$.

Proof. Since \mathfrak{E}_1 is negacyclic and \mathfrak{E}_2 is cyclic code over \mathbb{Z}_{ρ} with length m, so

$$\begin{split} \mathfrak{E}_1 &= \langle g_1(\dagger) \rangle \subseteq \mathbb{Z}_{\rho} / \langle \dagger^m + 1 \rangle, \\ \mathfrak{E}_2 &= \langle g_2(\dagger) \rangle \subseteq \mathbb{Z}_{\rho} / \langle \dagger^m - 1 \rangle. \end{split}$$

Further, $\mathfrak{E} = (1 - \widetilde{\xi})\mathfrak{E}_1 \oplus \widetilde{\xi} \mathfrak{E}_2$. Thus, $\mathfrak{E} = \{g(\dagger) \mid g(\dagger) = (1 - \widetilde{\xi})f_1(\dagger) + \widetilde{\xi}f_2(\dagger)\}$, where $f_1(\dagger) \in \mathfrak{E}_1$, $f_2(\dagger) \in \mathfrak{E}_2$. Therefore,

$$\begin{split} \mathfrak{E} &\subseteq \langle (1 - \widetilde{\xi}) g_1(\dagger) + \widetilde{\xi} g_2(\dagger) \rangle \\ &= \langle (1 - \widetilde{\xi}) g_1(\dagger), \ \widetilde{\xi} g_2(\dagger) \rangle \\ &= R[\dagger] / \langle \dagger^m - (\rho - 1 + 2\widetilde{\xi}) \rangle. \end{split}$$

Conversely, for any $(1 - \tilde{\xi})h_1(\dagger)g_1(\dagger) + \tilde{\xi}h_2(\dagger)g_2(\dagger) \in \langle (1 - \tilde{\xi})g_1(\dagger) + \tilde{\xi}g_2(\dagger) \rangle$, implies $(1 - \tilde{\xi})h_1(\dagger)g_1(\dagger) + \tilde{\xi}h_2(\dagger)g_2(\dagger) \subseteq R[\dagger]/\langle \dagger^m - (\rho - 1 + 2\tilde{\xi}) \rangle$, where $g_1(\dagger)$, $g_2(\dagger) \in R[\dagger]/\langle \dagger^m - (\rho - 1 + 2\tilde{\xi}) \rangle$, there exists $r_1(\dagger)$, $r_2(\dagger) \in \mathbb{Z}_{\rho}[\dagger]$ such that

$$(1 - \widetilde{\xi})g_1(\dagger) = (1 - \widetilde{\xi})r_1(\dagger),$$
$$\widetilde{\xi}g_2(\dagger) = \widetilde{\xi}r_2(\dagger).$$

So, $\langle (1-\widetilde{\xi})g_1(\dagger) + \widetilde{\xi}g_2(\dagger) \rangle = \langle (1-\widetilde{\xi})g_1(\dagger)\widetilde{\xi}g_2(\dagger) \rangle \subseteq \mathfrak{E}$, and hence $\mathfrak{E} = \langle (1-\widetilde{\xi})g_1(\dagger) + \widetilde{\xi}g_2(\dagger) \rangle = \langle (1-\widetilde{\xi})g_1(\dagger)\widetilde{\xi}g_2(\dagger) \rangle$. Since, $|\mathfrak{E}| = |\mathfrak{E}_1||\mathfrak{E}_2|$, so $|\mathfrak{E}| = p^{2m - (\deg(g_1(\dagger)) - \deg(g_2(\dagger)))}$.

Theorem 4.3. Dual of $(\rho - 1 + 2\tilde{\xi})$ -constacyclic code is of similar length $(\rho - 1 + 2\tilde{\xi})$ -constacyclic code.

Proof. The proof hold trivially because $(\rho - 1 + 2\widetilde{\xi})$ is a self unit element, that is,

$$\left(\rho - 1 + 2\widetilde{\xi}\right)^{-1} = \rho - 1 + 2\widetilde{\xi},$$

and dual code is $\left(\rho-1+2\widetilde{\xi}\right)$ -constacyclic code.

Lemma 4. 4. For a $(\rho - 1 + 2\widetilde{\xi})$ -constacyclic code, the dual code

1.
$$\mathfrak{E}^{\perp} = (1 - \widetilde{\xi})\mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi}\mathfrak{E}_{2}^{\perp}$$

2. $\mathfrak{E}^{\perp} = \langle (1 - \widetilde{\xi})g_{1}^{*}(\dagger), \widetilde{\xi}g_{2}^{*}(\dagger) \rangle = \langle (1 - \widetilde{\xi})g_{1}^{*}(\dagger) + \widetilde{\xi}g_{1}^{*}(\dagger) \rangle$
3. $|\mathfrak{E}^{\perp}| = p^{\operatorname{deg}(g_{1}(\dagger)) + \operatorname{deg}(g_{2})(\dagger)}$

where polynomials $g_1^*(\dagger)$ and $g_2^*(\dagger)$ are reciprocal of $\frac{(\dagger^m + 1)}{g_1(\dagger)}$ and $\frac{(\dagger^m - 1)}{g_2(\dagger)}$ respectively.

Lemma 4.5 [2]. If \mathfrak{E} is a cyclic or negacyclic code over the ring \mathbb{Z}_{ρ} with generator polynomial $g(\dagger)$. Then, \mathfrak{E} contains its dual if and only if $x^n - T \equiv 0 \mod(g(\dagger)g^*(\dagger))$, where $T = \pm 1$.

Theorem 4.6. For a $(\rho - 1 + 2\tilde{\xi})$ -constacyclic codes $\mathfrak{E} = \langle (1 - \tilde{\xi})g_1(\dagger), \tilde{\xi}g_2(\dagger) \rangle, \mathfrak{E}^{\perp} \subseteq \mathfrak{E}$ if and only if $\dagger^m + 1 \equiv 0 \mod(g_1(\dagger)g_1^*(\dagger))$ for \mathfrak{E}_1 and $\dagger^m - 1 \equiv 0 \mod(g_2(\dagger)g_2^*(\dagger))$ for \mathfrak{E}_2 .

Proof. First consider $\dagger^m + 1 \equiv 0 \mod(g_1(\dagger)g_1^*(\dagger))$ for \mathfrak{E}_1 , and $\dagger^m - 1 \equiv 0 \mod(g_2(\dagger)g_2^*(\dagger))$ for \mathfrak{E}_2 . Then by lemma 4.5, $\mathfrak{E}_1^{\perp} \subseteq \mathfrak{E}_1$ and $\mathfrak{E}_1^{\perp} \subseteq \mathfrak{E}_2$ and therefore $(1 - \widetilde{\xi})\mathfrak{E}_1^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_1$ and $\widetilde{\xi}\mathfrak{E}_2^{\perp} \subseteq \widetilde{\xi}\mathfrak{E}_2$ which implies that $(1 - \widetilde{\xi})\mathfrak{E}_1^{\perp} \oplus \widetilde{\xi}\mathfrak{E}_2^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_1 \oplus \widetilde{\xi}\mathfrak{E}_2$. Thus, $\langle (1 - \widetilde{\xi})g_1^*(\dagger) + \widetilde{\xi}g_2^*(\dagger) \rangle \subseteq \langle (1 - \widetilde{\xi})g_1(\dagger) + \widetilde{\xi}g_2(\dagger) \rangle$ and hence, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$.

Conversely, consider $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$, then $(1 - \widetilde{\xi})\mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi}\mathfrak{E}_{1}^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_{1} \oplus \widetilde{\xi}\mathfrak{E}_{2}$, that implies $(1 - \widetilde{\xi})\mathfrak{E}_{1}^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_{1}$ and $\widetilde{\xi}\mathfrak{E}_{2}^{\perp} \subseteq \widetilde{\xi}\mathfrak{E}_{2}$. Hence $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}$ and $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{2}$, and by Theorem 4.3, we have $\dagger^{m} + 1 \equiv 0 \mod (g_{1}(\dagger)g_{1}^{*}(\dagger))$ for \mathfrak{E}_{1} and $\dagger^{m} + 1 \equiv 0 \mod (g_{2}(\dagger)g_{2}^{*}(\dagger))$ for \mathfrak{E}_{2} .

Corollary 4.7. For a $(\rho - 1 + 2\tilde{\xi})$ -constacyclic code $\mathfrak{E} = (1 - \tilde{\xi})\mathfrak{E}_1 \oplus \tilde{\xi}\mathfrak{E}_2$ where \mathfrak{E}_1 and \mathfrak{E}_2 are linear codes. Then $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$ if and only if $\mathfrak{E}_1^{\perp} \subseteq \mathfrak{E}_1$ and $\mathfrak{E}_2^{\perp} \subseteq \mathfrak{E}_2$.

Proof. As $\mathfrak{E}^{\perp} = (1 - \widetilde{\xi})\mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi}\mathfrak{E}_{1}^{\perp}$, so, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$ implies $(1 - \widetilde{\xi})\mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi}\mathfrak{E}_{1}^{\perp}$ $\subseteq (1 - \widetilde{\xi})\mathfrak{E}_{1} \oplus (\widetilde{\xi})\mathfrak{E}_{2}$ and hence $(1 - \widetilde{\xi})\mathfrak{E}_{1}^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_{1}, (\widetilde{\xi})\mathfrak{E}_{2}^{\perp} \subseteq (\widetilde{\xi})\mathfrak{E}_{2}$ which implies, $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}, \mathfrak{E}_{2}^{\perp} \subseteq \mathfrak{E}_{2}$.

Conversely, for $\mathfrak{E}_1^{\perp} \subseteq \mathfrak{E}_1$, $\mathfrak{E}_2^{\perp} \subseteq \mathfrak{E}_2$ this $(1 - \widetilde{\xi})\mathfrak{E}_1^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_1$, $(\widetilde{\xi})\mathfrak{E}_2^{\perp} \subseteq (\widetilde{\xi})\mathfrak{E}_2$ holds. So, $(1 - \widetilde{\xi})\mathfrak{E}_1^{\perp} \oplus (\widetilde{\xi})\mathfrak{E}_2^{\perp} \subseteq (1 - \widetilde{\xi})\mathfrak{E}_1 \oplus (\widetilde{\xi})\mathfrak{E}_2$ and therefore, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$.

Lemma 4.8 [2] (CSS Construction). Let \mathfrak{E} be a linear code over Z_{ρ} having parameters [m, k, d]. Then, a quantum code with parameters $[m, 2k - m, \ge d]_{\rho}$ can be obtained if $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$.

Construction of quantum codes is provided by using Lemma 4.8 and Corollary 4.7 as:

Theorem 4.9. For a $(\rho - 1 + 2\tilde{\xi})$ -constacyclic code \mathfrak{E} there exists a quantum $[2m, 2k - 2m, \ge d_L]_{\rho}$ code with dimension of $\psi(\mathfrak{E})$ is k and d_L is minimum Lee distance of linear code is \mathfrak{E} .

5. Examples

Several examples are discussed in this section to illustrate the codes obtained through $(\rho - 1 + 2\tilde{\xi})$ -constacyclic codes.

Example 5.1. In $Z_7(\dagger)$, $\dagger^9 - 1 = (\dagger - 1)(\dagger - 2)(\dagger - 4)(\dagger^3 - 2)(\dagger^3 - 4)$ and $\dagger^9 + 1 = (\dagger + 1)(\dagger + 2)(\dagger + 4)(\dagger^3 - 3)(\dagger^3 - 5)$. For $a \notin be a (6 + 2\tilde{\xi})$ constacyclic codes over the ring R of length 9. Let $h_1(\dagger) = t^3 - 2$ and $h_1(\dagger) = t + 1$ then $h(\dagger) = (1 - \tilde{\xi})(\dagger^3 - 2)) + \tilde{\xi}(\dagger + 1)$ is generator polynomial of \mathfrak{E} . Since $h_1(\dagger)h_1^*(\dagger) | \dagger^9 - 1$ and $h_2(\dagger)h_2^*(\dagger) | \dagger^9 + 1$, hen due to Theorem 4.6 $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further $\psi(\mathfrak{E})$ is a [18, 14, 3] linear code. Theorem 4.9, implies that parameters of quantum code are [18, 10, ≥ 3]₇.

Example 5.2. In $Z_7(\dagger)$, $\dagger^{20} - 1 = (\dagger - 1)(\dagger + 6)(\dagger^2 + 1)(\dagger^4 + \dagger^3 + \dagger^2 + \dagger + 1)(\dagger^4 + 3\dagger^3 + 4\dagger^2 + 4\dagger + 1)(\dagger^4 + 4\dagger^3 + 4\dagger^2 + 3\dagger + 1)(\dagger^4 + 6\dagger^3 + \dagger^2 + 6\dagger + 1)\dagger^{20}$ and $+1 = (\dagger^2 + 3\dagger + 1)(\dagger^2 + 4\dagger + 1)(\dagger^4 + \dagger^3 + 6\dagger^2 + 3\dagger + 1)(\dagger^4 + 3\dagger^3 + 6\dagger^2 + \dagger + 1)(\dagger^4 + 4\dagger^3 + 6\dagger^2 + 6\dagger + 1)(\dagger^4 + 6\dagger^3 + 6\dagger^2 + 4\dagger + 1)$. For $a = 6 + 2\tilde{\xi}$ -constacyclic code \mathfrak{E} over R with length 20.

Let $h_1(\dagger) = (\dagger + 6)$ and $h_2(\dagger) = (\dagger^2 + 3\dagger + 1)$, then $g(\dagger) = (1 + \tilde{\xi}) (\dagger + 6)$ $(1 + \tilde{\xi}) (\dagger^2 + 3\dagger + 1)$ is generator polynomial of \mathfrak{E} . Since $h_1(\dagger)h_1^*(\dagger) | \dagger^{20} - 1$ and $h_2(\dagger)h_2^*(\dagger) | \dagger^{20} - 1$, then due to Theorem 4.6, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further, $\Psi(\mathfrak{E})$ is a [40, 37, 3] linear code. Theorem 4.9, implies that parameters of quantum code are [40, 34, ≥ 3]₇.

Example 5.3. In $\mathbb{Z}_{11}(\dagger)$, $\dagger^{18} - 1 = (\dagger + 1) (\dagger + 10) (\dagger^2 + \dagger k + 1) (\dagger^2 + 10\dagger + \dagger 1) (\dagger^6 + \dagger^3 + 1) (\dagger^6 + 10\dagger^3 + 1)$ and $\dagger^{18} + 1 = (\dagger^2 + 1) (\dagger^2 + 5\dagger + 1) (\dagger^2 + 6\dagger + 1) (\dagger^6 + 5\dagger^3 + 1) (\dagger^6 + 6\dagger^3 + 1)$. For a $(10 + 2\tilde{\xi})$ -constacyclic code \mathfrak{E} over R with length 20.

Let $h_1(\dagger) = (\dagger^2 + 10\dagger + 1)$ and $h_2(\dagger) = (\dagger^2 + 6\dagger + 1)$, then $g(\dagger) = (1 + \widetilde{\xi}) (\dagger^2 + 10\dagger + 1) + (1 - \widetilde{\xi}) (\dagger^2 + 6\dagger + 1)$ is generator polynomial of \mathfrak{E} . Since $h_1(\dagger)h_1^*(\dagger) | \dagger^{18} - 1$ and $h_2(\dagger)h_2^*(\dagger) | \dagger^{18} + 1$, then due to Theorem 4.6, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further, $\Psi(\mathfrak{E})$ is a [36, 32, 3] linear code. Theorem 4.9, implies that parameters of quantum code are [36, 28, ≥ 3]₁₁.

Example 5.4. In $\mathbb{Z}_{11}(\dagger)$, $\dagger^{18} - 1 = (\dagger - 1) (\dagger + 10) (\dagger^2 + \dagger + 1) (\dagger^2 + 10\dagger + 1) (\dagger^2 + \dagger^3 + 1) (\dagger^6 + 10\dagger^3 + 1)$ and $\dagger^{18} + 1 = (\dagger^2 + 1) (\dagger^2 + 5\dagger + 1) (\dagger^2 + 6\dagger + 1) (\dagger^2 + 5\dagger^3 + 1) (\dagger^6 + 6\dagger^3 + 1)$. For a $(10 + 2\tilde{\xi})$ -constacyclic code \mathfrak{E} over R with length 20.

Let $h_1(\dagger) = (\dagger^6 + \dagger^3 + 1)$ and $h_2(\dagger) = (\dagger^2 + 1)$, then $g(\dagger) = (1 + \tilde{\xi})(\dagger^6 + \dagger^3 + 1)$ + $(1 - \tilde{\xi})(\dagger^2 + 1)$ is generator polynomial of \mathfrak{E} . Since $h_1(\dagger)h_1^*(\dagger) | \dagger^{18} - 1$ and

 $h_2(\dagger)h_2^*(\dagger) | \dagger^{18} + 1$ then due to Theorem 4.6, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further, $\Psi(\mathfrak{E})$ is a [36, 28, 4] linear code. Theorem 4.9, implies that parameters of quantum code are [36, 20, ≥ 4]₁₁.

References

- [1] A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A 54(6) (1996), 4741.
- [2] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory 44(4) (1998), 1369-1387.
- [3] J. Gao and Y. Wang, u-Constacyclic codes over $\mathbb{F}_p + u\mathbb{F}_p$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process 17(122) (2018), 1-19.
- [4] J. Qian, Quantum codes from cyclic codes over $F_2 + vF_2$, J. Inf. Comput. Sci. 10(6) (2013), 1715-1722.
- [5] J. Qian, W. Ma and W. Guo, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf. 7(06) (2009), 1277-1283.
- [6] M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $F_p + vF_p$, Int. J. Inf. Coding Theory 3(2) (2015), 137-144.
- [7] M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $F_3 + vF_3$, Int. J. Quantum Inf. 12(06) (2014), 1450042.
- [8] M. Ashraf and G. Mohammad, Quantum codes over F_p from cyclic codes over $F_p[u, v]/(u^2 1, v^3 v, uv vu)$, Cryptogr. Commun. 11 (2019), 325-335.
- R. Li and Z. Xu, Construction of [n, n-4, 3]_q quantum codes for odd prime power q, Phys. Rev. A 82(5) (2010), 052316.
- [10] S. A. Aly, A. Klappenecker and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inf. Theory 53(3) (2007), 1183-1188.
- [11] S. Zhu and L. Wang, A class of constacyclic codes over $F_p + vF_p$, and its Gray image, Discrete Math. 311(23-24) (2011), 2677-2682.
- [12] Y. Liu, R. Li, L. Lv et al., A class of constacyclic BCH codes and new quantum codes, Quantum Inf. Process 16(66) (2017).
- [13] X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $F_4 + uF_4$, Int. J. Quantum Inf. 9(02) (2011), 689-700.