QUANTUM CODES OVER $\mathbb{Z}_{\rho}+\widetilde{\xi} \mathbb{Z}_{\rho}$

SWATI KHARUB ${ }^{1}$, SONIKA AHLAWAT ${ }^{2}$ and DALIP ${ }^{\text {SINGH }}{ }^{3}$

1,2,3Department of Mathematics
Maharshi Dayanand University
Rohtak, Haryana 124001, India
E-mail: sahlawat1495@gmail.com
dsmdur@gmail.com

Abstract

This paper gives the construction of quantum codes by using $(\rho-1+2 \widetilde{\xi})$-constacyclic codes over $\mathbb{Z}_{\rho}+\widetilde{\xi}_{\mathbb{Z}_{\rho}}$ with $\widetilde{\xi}^{2}=\widetilde{\xi}$ with the help of a well defined gray map. A family of quantum error-correcting codes obtained from Calderbank-Shor-Steane (CSS) construction is applied to $(\rho-1+2 \widetilde{\xi})$-constacyclic codes over $\mathbb{Z}_{\rho}+\widetilde{\xi} \mathbb{Z}_{\rho}$. Finally, the parameters of associated quantum error-correcting codes are derived. Some examples of quantum codes of arbitrary length are also obtained as an application of obtained results.

1. Introduction

Quantum error-correction plays a crucial role in quantum computation and communication. The most efficient way to control decoherence is by using quantum error-correcting codes. Rapid development has been observed in recent years in the field of quantum error-correction. In [7], Ashraf and Mohammad designed a method to obtain the self-orthogonal codes over the field F_{3} by constructing a Gray map of linear and cyclic codes over a finite semi-local non-chain ring $F_{3}+v F_{3}$ with $v^{2}=1$. The necessary and sufficient condition is also provided for the cyclic codes over the ring considered ring that contains its dual. This work was further extended over the commutative
non-chain ring $F_{p}+v F_{p}$ with $v^{2}=v$ in [6] and some main results are described on the linear and cyclic codes which are used to obtain the quantum codes over this ring. L_{i} and X_{u} [9], studied the construction of q-ary quantum maximal distance separable (MDS) codes having parameters $[n, n-4,3]_{q}$ with $4 \leq n \leq q^{2}+1$ by using Hermitian self-orthogonal codes over the field $F_{q^{2}}$. In [1], Steane presented a method for finding the good quantum error-correcting codes. Classical codes are used to get the codes for up to 16 information qubits with the correction of small number of errors. Kai and Zhu [13], considered the self-orthogonal codes over the finite field F_{4} which are used to derive the quantum codes. A method to obtain the Hermitian selforthogonal is also provided over F_{4} as the gray map of linear codes over $F_{4}+u F_{4}$. In [11], the authors introduced the concept of Gray images from $F_{p}+v F_{p}$ to $F_{p^{2}}$ and obtained the ($1-2 v$)-constacyclic codes of length n and determines their dual codes. BCH codes that contains dual 1 codes are used to derive the quantum stabilizer codes in [10]. Further, it has been proved that a BCH code of length n contain its dual only if its designed distance is $o(\sqrt{n})$ and the convex is derived in case of narrow-sense codes. Results are provided to make it possible to detemine the parameters of quantum BCH codes in terms of their design parameters. In [2], Calderbank, et al. transformed the problem of obtaining the quantum error-correcting codes onto the problem of deriving the additive codes over the field $G F(4)$ which are self-orthogonal with respect to a certain trace inner product. A table of lower and upper bounds on these codes is provided of length up to 30 qubits. Qian et al. in [5] described a new method of finding the selforthogonal codes over the finite field F_{2} and on the basis of this method, quantum error-correcting codes are constructed from the cyclic codes over $F_{2}+u F_{2}$. In [4], a new method is used to construct the quantum errorcorrecting codes from the cyclic codes over the ring $F_{2}+v F_{2}$. Moreover, in [3] construction of some non-binary quantum codes from u-constacyclic codes over $F_{p}+u F_{p}$ is given by Gao and Wang. Recently, Ashraf and Mohammad gave the construction of quantum codes using cyclic codes over the ring
$F_{p}[u, v]$ where $u^{2}=1, v^{3}=v, u v=v u$ in [8]. Using classical cyclic codes many good quantum codes are being constructed.

In this paper, quantum codes obtained through $(\rho-1+2 \widetilde{\xi})$-constacyclic codes over $\mathbb{Z}_{\rho}+\widetilde{\xi} \mathbb{Z}_{\rho}$. Section 1 , describes the preliminaries consists of fundamental properties. Section 2 , incorporates Gray map from $\mathbb{Z}_{\rho}+\zeta \mathbb{Z}_{\rho}$ to \mathbb{Z}_{ρ}^{2} and the development of said codes are presented in Section 3, which is illustrated using examples in Section 4.

2. Preliminaries

The ring

$$
\begin{aligned}
R= & \mathbb{Z}_{\rho}+\widetilde{\xi} \mathbb{Z}_{\rho}=\{0,1, \ldots, \rho-1, \widetilde{\xi}, 2 \widetilde{\xi}, \ldots,(\rho-1) \widetilde{\xi}, \\
& 1+\widetilde{\xi}, 1+2 \widetilde{\xi}, 2+\widetilde{\xi}, \ldots, \rho-1+(\rho-1) \widetilde{\xi}\},
\end{aligned}
$$

where ρ is an odd prime and $\tilde{\xi}^{2}=\widetilde{\xi}$ is semi-local, commutative, non-chain ring consisting of ρ^{2} elements, characteristic ρ, where $(\rho-1)+2 \widetilde{\xi}$ is a unit of R.

The two maximal ideals of the ring are precisely

$$
\langle\widetilde{\xi}\rangle,
$$

and

$$
\langle 1-\widetilde{\xi}\rangle .
$$

It is discernible that $R /\langle\widetilde{\xi}\rangle, R /\langle 1-\widetilde{\xi}\rangle$ are isomorphic with \mathbb{Z}_{ρ}. Chinese Remainder Theorem allows us to express R as $R \cong\langle\widetilde{\xi}\rangle \oplus\langle 1-\widetilde{\xi}\rangle \cong \mathbb{Z}_{\rho} \oplus \mathbb{Z}_{\rho}$.

Also, every element $\alpha+\widetilde{\xi} \beta$ of this ring can be uniquely expressed as $\alpha+\widetilde{\xi} \beta=(\alpha+\beta)(\widetilde{\xi})+(\alpha)(1-\widetilde{\xi})$ for all $\alpha, \beta \in \mathbb{Z}_{\rho}$.

A nonempty subset \mathcal{K} of R^{m} is a linear code over R of length m. If \mathcal{K} is an
R-submodule of R^{m} and the elements of \mathcal{K} are codewords. Let \mathcal{K} be a code over R of length m and its polynomial representation be $T(\mathcal{K})$, that is,

$$
T(\mathcal{K})=\left\{\sum_{i=0}^{m-1} \chi_{i} \dagger^{i} \mid\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right) \in \mathcal{K}\right\}
$$

Let Υ, Λ and \mho are the maps from R^{m} to R^{m} defined as

$$
\begin{gathered}
\Upsilon\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)=\left(\chi_{m-1}, \chi_{0}, \ldots, \chi_{m-2}\right), \\
\Lambda\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)=\left(-\chi_{m-1}, \chi_{0}, \ldots, \chi_{m-2}\right), \\
\mho\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)=\left(\vartheta \chi_{m-1}, \chi_{0}, \ldots, \chi_{m-2}\right),
\end{gathered}
$$

respectively. Then \mathcal{K} is a cyclic, negacyclic and ϑ-constacyclic if $\Upsilon(\mathcal{K})=\mathcal{K}, \Lambda(\mathcal{K})$ and $\mho(\mathcal{K})=\mathcal{K}$ respectively. A code \mathcal{K} over R of length m is cyclic, negacyclic and ϑ-constacyclicif and only if $T(\mathcal{K})$ is an ideal of $R[y] /\left\langle\dagger^{m}-1\right\rangle, R[y] /\left\langle\dagger^{m}+1\right\rangle$ and $R[y] /\left\langle\dagger^{m}-\vartheta\right\rangle$ respectively.

For the arbitrary elements $\chi=\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)$ and $v=\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ of R, the inner product is defined as

$$
\chi \cdot v=\left(\chi_{0} v_{0}+\chi_{1} v_{1}+\ldots+\chi_{m-1} v_{m-1}\right) .
$$

If $\chi \cdot v=0$, then χ and ϑ are orthogonal. If \mathcal{K} is a linear code over R of length m, then the dual code of \mathcal{K} is defined as

$$
\mathcal{K}^{\perp}=\left\{\chi \in R^{m}: \chi \cdot v=0 \text { for all } v \in \mathcal{K}\right\} .
$$

which is also a linear code over the ring R of length m. A code \mathcal{K} is said to be self orthogonal if $\mathcal{K} \subseteq \mathcal{K}^{\perp}$ and said to be self dual if $\mathcal{K}=\mathcal{K}^{\perp}$.

3. Gray Map Over \boldsymbol{R}

The hamming weight $w_{H}(\chi)$ for any codeword $\chi=\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)$ $\in R^{m}$ is defined as the number of non-zero components in $\chi=\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)$. The minimum weight of a code \mathcal{K}, that is, $w_{H}(\mathcal{K})$ is

$$
\text { QUANTUM CODES OVER } \mathbb{Z}_{p}+\tilde{\xi} \mathbb{Z}_{p}
$$

the least weight among all of its non zero codewords. The Hamming distance between two codes $\chi=\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right)$ and $\hat{\chi}=\left(\hat{\chi}_{0}, \hat{\chi}_{1}, \ldots, \hat{\chi}_{m-1}\right)$ of R^{m}, denoted by $d_{H}(\chi, \hat{\chi})=w_{H}(\chi-\hat{\chi})$ and is defined as

$$
d_{H}(\chi, \hat{\chi})=\left|\left\{i \mid \chi_{i} \neq \hat{\chi}_{i}\right\}\right| .
$$

Minimum distance of \mathcal{K}, denoted by d_{H} and is given by minimum distance between the different pairs of codewords of the linear code \mathcal{K}. For any codeword $\chi=\left(\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}\right) \in R^{m}$, the lee weight is defined as $w_{L}(\chi)=\sum_{i=0}^{m-1} w_{L}\left(\chi_{i}\right)$ and lee distance of $(\chi-\hat{\chi})$ is given by $d_{L}(\chi, \hat{\chi})=w_{L}(\chi-\hat{\chi})=\sum_{i=0}^{m-1} w_{L}\left(\chi_{i}-\hat{\chi}_{i}\right)$.

Minimum lee distance of \mathcal{K} is denoted by d_{L} and is given by minimum lee distance of different pairs of codewords of the linear code \mathcal{K}.

The map $\psi: R$ to \mathbb{Z}_{ρ}^{2} as

$$
\psi\left(\eta_{1}+\widetilde{\xi} \eta_{2}\right)=\left(\eta_{1}, \eta_{1}+\eta_{2}\right)
$$

with $\eta_{1}+\widetilde{\xi} \eta_{2} \in R$ is the gray map and can be extended from $R^{m} \rightarrow \mathbb{Z}_{\rho}^{2 m}$ as

$$
\psi\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{m-1}\right)=\left(\eta_{1}, \eta_{1}+\eta_{1}, \eta_{2}, \eta_{2}+\dot{\eta_{2}}, \ldots \eta_{m-1}, \eta_{1}+\eta_{m-1}\right),
$$

where $\alpha_{i}=\eta_{i}+\widetilde{\xi} \eta_{i}$ for all $0 \leq i \leq m-1$.
Proposition 3.1. The Gray map ψ is a linear and distance preserving isometry map from $\left(R^{m}, d_{L}\right)$ to $\left(\mathbb{Z}_{\rho}^{2 m}, d_{H}\right)$.

Throughout the text, the code \mathfrak{E} is considered to be a linear code of length m over R.

Proposition 3.2. For a linear self orthogonal code \mathfrak{E} so is $\psi(\mathfrak{E})$.
Proof. Consider a self orthogonal code \mathfrak{E} and $\eta_{1}, \eta_{2} \in \mathfrak{E}$ with $\eta_{1}=\xi_{1}+\widetilde{\xi} \varpi_{1}$ and $\eta_{2}=\xi_{2}+\widetilde{\xi} \varpi_{2}$, where $\xi_{1}, \xi_{2}, \varpi_{1}, \varpi_{2} \in \mathbb{Z}_{\rho}$.

By self orthogonality of η_{1}, η_{2} we have $\eta_{1} \cdot \eta_{2}=0$, that is, $\xi_{1} \xi_{2}+\xi\left(\varpi_{1} \varpi_{2}+\xi_{1} \varpi_{2}+\xi_{2} \varpi_{1}\right)=0$, it follow that $\xi_{1} \xi_{2}=\varpi_{1} \varpi_{2}+\xi_{1} \varpi_{2}$ $+\xi_{2} \varpi_{1}=0$. Now, applying ψ on η_{1}, η_{2} we have
$\psi\left(\eta_{1}\right) . \psi\left(\eta_{2}\right)=\left(\xi_{1}, \xi_{1}+\varpi_{1}\right)\left(\xi_{2}, \xi_{2}+\varpi_{2}\right)=\left(2 \xi_{1} \xi_{2}+\xi_{1} \varpi_{2}+\xi_{2} \varpi_{1}+\varpi_{1} \varpi_{2}\right)=0$, which implies $\psi(\mathfrak{E})$ is self orthogonal.

4. Quantum Codes Through $(\rho-1+2 \widetilde{\xi})$-Constacyclic Codes Over \boldsymbol{R}

For a linear code \mathfrak{E},

$$
\mathfrak{E}_{1}=\left\{a \in \mathbb{Z}_{\rho}^{m} \mid \text { for some } b \in \mathbb{Z}_{\rho}^{m} \text { such that }(a+b \widetilde{\xi}) \in \mathfrak{E}\right\}
$$

and

$$
\mathfrak{E}_{2}=\left\{a+b \in \mathbb{Z}_{\rho}^{m} \mid \text { such that }(a+b \widetilde{\xi}) \in \mathfrak{E}\right\}
$$

are σ-ary codes such that

$$
(1-\widetilde{\xi}) \mathfrak{E}_{1}=\mathfrak{E}, \bmod (\widetilde{\xi})
$$

and

$$
(\widetilde{\xi}) \mathfrak{E}_{2}=\mathfrak{E}, \bmod (1-\widetilde{\xi})
$$

Therefore, \mathfrak{E}_{1} and \mathfrak{E}_{2} are the linear $\left[m, k_{1}, d_{1}\right]$ and $\left[m, k_{2}, d_{2}\right]$ codes over \mathbb{Z}_{ρ} respectively. Moreover,

$$
\mathfrak{E}=(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus(\widetilde{\xi}) \mathfrak{E}_{2}
$$

and

$$
|\mathfrak{E}|=\left|\mathfrak{E}_{1}\right|\left|\mathfrak{E}_{2}\right|
$$

Further, $\psi(\mathfrak{E})$ is a σ-ary linear $\left[2 m, k_{1}+k_{2}, \min \left(d_{1}, d_{2}\right)\right]$ code.
Theorem 4.1. The code \mathfrak{E} is $(\rho-1+2 \widetilde{\xi})$-constacyclic if and only if \mathfrak{E}_{1} is negacyclic and \mathfrak{E}_{2} is cyclic over \mathbb{Z}_{ρ}.

Proof. For any $\dot{a}=\left(\dot{a}_{0}, \dot{a}_{1}, \ldots \dot{a}_{m-1}\right) \in \mathfrak{E}_{1}$, and $\dot{b}=\left(\dot{b}_{0}, \dot{b}_{1}, \ldots \dot{b}_{m-1}\right) \in \mathfrak{E}_{2}$. For an arbitrary element $\zeta_{i}=(1-\widetilde{\xi}) \dot{a}_{i}+(\widetilde{\xi}) \dot{b}_{i}$, where $\quad \dot{a}_{i}, \dot{b}_{i} \in \mathbb{Z}_{\rho}$ for $i=0,1, \ldots, m-1$.

Let $\zeta=\left(\zeta_{0}, \zeta_{1}, \ldots \zeta_{m-1}\right) \in \mathfrak{E}$.
For $(\rho-1+2 \widetilde{\xi})$-constacyclic code \mathfrak{E},

$$
\begin{aligned}
& \left.\mho(\zeta)=(\rho-1+2 \widetilde{\xi}) \zeta_{m-1}, \zeta_{0,}, \zeta_{m-2}\right) \\
& =\left((\rho-1+2 \widetilde{\xi}) a_{m-1}+\widetilde{\xi}(\rho-1) b_{m-1}+2 \widetilde{\xi}(1-\widetilde{\xi}) a_{m-1}+2 \widetilde{\xi} b_{m-1},(1-\widetilde{\xi}) \dot{\alpha}_{0}\right. \\
& \left.+\widetilde{\xi} \dot{b}_{0}, \ldots,(1-\widetilde{\xi}) a_{\dot{m}-2}+\widetilde{\xi} b_{m-2}\right) \\
& =(1-\widetilde{\xi}) \Lambda(\dot{a})+\widetilde{\xi} \Upsilon(\dot{b})
\end{aligned}
$$

which is in \mathfrak{E}. Therefore, \mathfrak{E}_{1} and \mathfrak{E}_{2} are negacyclic and cyclic codes over \mathbb{Z}_{ρ} respectively with length m. Again, if \mathfrak{E}_{1} and \mathfrak{E}_{2} are negacyclic and cyclic code over \mathbb{Z}_{ρ}, respectively, with length m, then for any $\zeta=\left(\zeta_{0}, \zeta_{1}, \ldots, \zeta_{m-1}\right) \in \mathfrak{E}$ where $\zeta_{i}=(1-\widetilde{\xi}) \dot{\alpha}_{i}+\widetilde{\xi} \dot{b}_{i}$, and $\dot{a}_{i}, \dot{b}_{i} \in \mathbb{Z}_{\rho}$ for $i=0,1, \ldots, m-1$.

If \mathfrak{E}_{1} is a negacyclic code and \mathfrak{E}_{2} is a cyclic code over the ring \mathbb{Z}_{ρ} of length m, then $\Lambda(\dot{a}) \in \mathfrak{E}_{1}, \Upsilon(\dot{b}) \in \mathfrak{E}_{2}$.

So, $\quad(1-\widetilde{\xi}) \Lambda(\dot{a})+\widetilde{\xi} \Upsilon(\dot{b}) \in \mathfrak{E}, \quad$ where $\quad \mho(\zeta)=(1-\widetilde{\xi}) \Lambda(\dot{a})+(\widetilde{\xi}) \Upsilon(\dot{b}) . \quad$ Thus, $\mho(\zeta) \in \mathfrak{E}$. Hence, \mathfrak{E} is a $(\rho-1+2 \widetilde{\xi})$-constacyclic code.

Lemma 4.2. For $a(\rho-1+2 \widetilde{\xi})$-constacyclic code \mathfrak{E}

$$
\mathfrak{E}=\left\langle(1-\widetilde{\xi}) g_{1}(\dagger), \widetilde{g}_{2}(\dagger)\right\rangle=\left\langle(1-\widetilde{\xi}) g_{1}(\dagger)+\widetilde{\xi} g_{2}(\dagger)\right\rangle
$$

with $|\mathfrak{E}|=p^{2 m-\operatorname{deg}\left(g_{1}(\dagger)\right)-\operatorname{deg}\left(g_{2}(\dagger)\right)}$, where polynomials $g_{i}(\dagger)$ generates $\mathfrak{E}_{i}, i=1,2$.

Proof. Since \mathfrak{E}_{1} is negacyclic and \mathfrak{E}_{2} is cyclic code over \mathbb{Z}_{ρ} with length m, so

$$
\begin{aligned}
& \mathfrak{E}_{1}=\left\langle g_{1}(\dagger)\right\rangle \subseteq \mathbb{Z}_{\rho} /\left\langle\dagger^{m}+1\right\rangle, \\
& \mathfrak{E}_{2}=\left\langle g_{2}(\dagger)\right\rangle \subseteq \mathbb{Z}_{\rho} /\left\langle\dagger^{m}-1\right\rangle .
\end{aligned}
$$

Further, $\mathfrak{E}=(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus \widetilde{\xi} \mathfrak{E}_{2}$. Thus, $\mathfrak{E}=\left\{g(\dagger) \mid g(\dagger)=(1-\widetilde{\xi}) f_{1}(\dagger)+\widetilde{\xi} f_{2}(\dagger)\right\}$, where $f_{1}(\dagger) \in \mathfrak{E}_{1}, f_{2}(\dagger) \in \mathfrak{E}_{2}$. Therefore,

$$
\begin{aligned}
\mathfrak{E} & \subseteq\left\langle(1-\widetilde{\xi}) g_{1}(\dagger)+\widetilde{\xi} g_{2}(\dagger)\right\rangle \\
& =\left\langle(1-\widetilde{\xi}) g_{1}(\dagger), \widetilde{\xi} g_{2}(\dagger)\right\rangle \\
& =R[\dagger] /\left\langle\dagger^{m}-(\rho-1+2 \widetilde{\xi})\right\rangle .
\end{aligned}
$$

Conversely, for any $(1-\widetilde{\xi}) h_{1}(\dagger) g_{1}(\dagger)+\widetilde{\xi} h_{2}(\dagger) g_{2}(\dagger) \in\left\langle(1-\widetilde{\xi}) g_{1}(\dagger)+\widetilde{\xi} g_{2}(\dagger)\right\rangle$, implies $(1-\widetilde{\xi}) h_{1}(\dagger) g_{1}(\dagger)+\widetilde{\xi} h_{2}(\dagger) g_{2}(\dagger) \subseteq R[\dagger] /\left\langle\dagger^{m}-(\rho-1+2 \widetilde{\xi})\right\rangle$, where $g_{1}(\dagger)$, $g_{2}(\dagger) \in R[\dagger] /\left\langle\dagger^{m}-(\rho-1+2 \widetilde{\xi})\right\rangle$, there exists $r_{1}(\dagger), r_{2}(\dagger) \in \mathbb{Z}_{\rho}[\dagger]$ such that

$$
\begin{aligned}
(1-\widetilde{\xi}) g_{1}(\dagger) & =(1-\widetilde{\xi}) r_{1}(\dagger), \\
\widetilde{\xi} g_{2}(\dagger) & =\widetilde{\xi} r_{2}(\dagger) .
\end{aligned}
$$

So, $\quad\left\langle(1-\widetilde{\xi}) g_{1}(\dagger)+\widetilde{\xi} g_{2}(\dagger)\right\rangle=\left\langle(1-\widetilde{\xi}) g_{1}(\dagger) \widetilde{\xi} g_{2}(\dagger)\right\rangle \subseteq \mathfrak{E}, \quad$ and \quad hence $\mathfrak{E}=\left\langle(1-\widetilde{\xi}) g_{1}(\dagger)+\widetilde{\xi} g_{2}(\dagger)\right\rangle=\left\langle(1-\widetilde{\xi}) g_{1}(\dagger) \widetilde{\xi} g_{2}(\dagger)\right\rangle . \quad$ Since, $\quad|\mathfrak{E}|=\left|\mathfrak{E}_{1}\right|\left|\mathfrak{E}_{2}\right|, \quad$ so $|\mathfrak{E}|=p^{2 m-\left(\operatorname{deg}\left(g_{1}(\dagger)\right)-\operatorname{deg}\left(g_{2}(\dagger)\right)\right)}$.

Theorem 4.3. Dual of $(\rho-1+2 \widetilde{\xi})$-constacyclic code is of similar length $(\rho-1+2 \widetilde{\xi})$-constacyclic code.

Proof. The proof hold trivially because $(\rho-1+2 \widetilde{\xi})$ is a self unit element, that is,

$$
(\rho-1+2 \widetilde{\xi})^{-1}=\rho-1+2 \widetilde{\xi},
$$

and dual code is $(\rho-1+2 \widetilde{\xi})$-constacyclic code.
Lemma 4. 4. For $a(\rho-1+2 \widetilde{\xi})$-constacyclic code, the dual code

1. $\mathfrak{E}^{\perp}=(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi} \mathfrak{E}_{2}^{\perp}$
2. $\mathfrak{E}^{\perp}=\left\langle(1-\widetilde{\xi}) g_{1}^{*}(\dagger), \tilde{\xi} g_{2}^{*}(\dagger)\right\rangle=\left\langle(1-\widetilde{\xi}) g_{1}^{*}(\dagger)+\widetilde{\xi} g_{1}^{*}(\dagger)\right\rangle$
3. $\left|\mathfrak{E}^{\perp}\right|=p^{\operatorname{deg}\left(g_{1}(\dagger)\right)+\operatorname{deg}\left(g_{2}\right)(\dagger)}$
where polynomials $g_{1}^{*}(\dagger)$ and $g_{2}^{*}(\dagger)$ are reciprocal of $\frac{\left(\dagger^{m}+1\right)}{g_{1}(\dagger)}$ and $\frac{\left(\dagger^{m}-1\right)}{g_{2}(\dagger)}$ respectively.

Lemma 4.5 [2]. If \mathfrak{E} is a cyclic or negacyclic code over the ring \mathbb{Z}_{ρ} with generator polynomial $g(\dagger)$. Then, \mathfrak{E} contains its dual if and only if $x^{n}-T \equiv 0 \bmod \left(g(\dagger) g^{*}(\dagger)\right)$, where $T= \pm 1$.

Theorem 4.6. For $a \quad(\rho-1+2 \widetilde{\xi})$-constacyclic codes $\mathfrak{E}=\left\langle(1-\widetilde{\xi}) g_{1}(\dagger), \widetilde{\xi} g_{2}(\dagger)\right\rangle, \mathfrak{E}^{\perp} \subseteq \mathfrak{E}$ if and only if $\uparrow^{m}+1 \equiv 0 \bmod \left(g_{1}(\dagger) g_{1}^{*}(\dagger)\right)$ for \mathfrak{E}_{1} and $\dagger^{m}-1 \equiv 0 \bmod \left(g_{2}(\dagger) g_{2}^{*}(\dagger)\right)$ for \mathfrak{E}_{2}.

Proof. First consider $\dagger^{m}+1 \equiv 0 \bmod \left(g_{1}(\dagger) g_{1}^{*}(\dagger)\right) \quad$ for \mathfrak{E}_{1}, and $\dagger^{m}-1 \equiv 0 \bmod \left(g_{2}(\dagger) g_{2}^{*}(\dagger)\right)$ for \mathfrak{E}_{2}. Then by lemma 4.5, $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}$ and $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{2}$ and therefore $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1}$ and $\widetilde{\xi} \mathfrak{E}_{2}^{\perp} \subseteq \widetilde{\xi} \mathfrak{E}_{2}$ which implies that $\quad(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi} \mathfrak{E}_{2}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus \widetilde{\xi} \mathfrak{E}_{2}$. Thus, $\quad\left\langle(1-\widetilde{\xi}) g_{1}^{*}(\dagger)+\widetilde{\xi} g_{2}^{*}(\dagger)\right\rangle$ $\subseteq\left\langle(1-\widetilde{\xi}) g_{1}(\dagger)+\widetilde{\xi} g_{2}(\dagger)\right\rangle$ and hence, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$.

Conversely, consider $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$, then $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi} \mathfrak{E}_{1}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus \widetilde{\xi} \mathfrak{E}_{2}$, that implies $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1}$ and $\widetilde{\xi} \mathfrak{E}_{2}^{\perp} \subseteq \widetilde{\xi} \mathfrak{E}_{2}$. Hence $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}$ and $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{2}$, and by Theorem 4.3, we have $\dagger^{m}+1 \equiv 0 \bmod \left(g_{1}(\dagger) g_{1}^{*}(\dagger)\right)$ for \mathfrak{E}_{1} and $\dagger^{m}+1 \equiv 0 \bmod \left(g_{2}(\dagger) g_{2}^{*}(\dagger)\right)$ for \mathfrak{E}_{2}.

Corollary 4.7. For $a(\rho-1+2 \widetilde{\xi})$-constacyclic code $\mathfrak{E}=(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus \widetilde{\xi} \mathfrak{E}_{2}$ where \mathfrak{E}_{1} and \mathfrak{E}_{2} are linear codes. Then $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$ if and only if $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}$ and $\mathfrak{E}_{2}^{\perp} \subseteq \mathfrak{E}_{2}$.

Proof. As $\mathfrak{E}^{\perp}=(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi} \mathfrak{E}_{1}^{\perp}$, so, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$ implies $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \oplus \widetilde{\xi} \mathfrak{E}_{1}^{\perp}$ $\subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus(\widetilde{\xi}) \mathfrak{E}_{2}$ and hence $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1},(\widetilde{\xi}) \mathfrak{E}+\perp(\widetilde{\xi}) \mathfrak{E}_{2}$ which implies, $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}$, $\mathfrak{E} \perp \subseteq \mathfrak{E}_{2}$.

Conversely, for $\mathfrak{E}_{1}^{\perp} \subseteq \mathfrak{E}_{1}$, $\mathfrak{E}_{2}^{\perp} \subseteq \mathfrak{E}_{2}$ this $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1},(\widetilde{\xi}) \mathfrak{E}_{2}^{\perp}$ $\subseteq(\widetilde{\xi}) \mathfrak{E}_{2}$ holds. So, $(1-\widetilde{\xi}) \mathfrak{E}_{1}^{\perp} \oplus(\widetilde{\xi}) \mathfrak{E}_{2}^{\perp} \subseteq(1-\widetilde{\xi}) \mathfrak{E}_{1} \oplus(\widetilde{\xi}) \mathfrak{E}_{2}$ and therefore, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$.

Lemma 4.8 [2] (CSS Construction). Let \mathfrak{E} be a linear code over Z_{ρ} having parameters $[m, k, d]$. Then, a quantum code with parameters $[m, 2 k-m, \geq d]_{\rho}$ can be obtained if $\mathfrak{E} \perp \subseteq \mathfrak{E}$.

Construction of quantum codes is provided by using Lemma 4.8 and Corollary 4.7 as:

Theorem 4.9. For $a(\rho-1+2 \widetilde{\xi})$-constacyclic code \mathfrak{E} there exists a quantum $\left[2 m, 2 k-2 m, \geq d_{L}\right]_{\rho}$ code with dimension of $\psi(\mathfrak{E})$ is k and d_{L} is minimum Lee distance of linear code is \mathfrak{E}.

5. Examples

Several examples are discussed in this section to illustrate the codes obtained through $(\rho-1+2 \tilde{\xi})$-constacyclic codes.

Example 5.1. In $Z_{7}(\dagger), \dagger^{9}-1=(\dagger-1)(\dagger-2)(\dagger-4)\left(\dagger^{3}-2\right)\left(\dagger^{3}-4\right)$ and $\dagger^{9}+1=(\dagger+1)(\dagger+2)(\dagger+4)\left(\dagger^{3}-3\right)\left(\dagger^{3}-5\right)$. For a E be a $(6+2 \widetilde{\xi})-$ constacyclic codes over the ring R of length 9 . Let $h_{1}(\dagger)=t^{3}-2$ and $h_{1}(\dagger)=t+1$ then $\left.h(\dagger)=(1-\widetilde{\xi})\left(\dagger^{3}-2\right)\right)+\widetilde{\xi}(\dagger+1)$ is generator polynomial of \mathfrak{E}. Since $h_{1}(\dagger) h_{1}^{*}(\dagger) \mid \dagger^{9}-1$ and $h_{2}(\dagger) h_{2}^{*}(\dagger) \mid \dagger^{9}+1$, hen due to Theorem 4.6 $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further $\psi(\mathfrak{E})$ is a $[18,14,3]$ linear code. Theorem 4.9, implies that parameters of quantum code are $[18,10, \geq 3]_{7}$.

Example 5.2. In $Z_{7}(\dagger), \dagger^{20}-1=(\dagger-1)(\dagger+6)\left(\dagger^{2}+1\right)\left(\dagger^{4}+\dagger^{3}+\dagger^{2}+\dagger+1\right)$ $\left(\dagger^{4}+3 \dagger^{3}+4 \dagger^{2}+4 \dagger+1\right)\left(\dagger^{4}+4 \dagger^{3}+4 \dagger^{2}+3 \dagger+1\right)\left(\dagger^{4}+6 \dagger^{3}+\dagger^{2}+6 \dagger+1\right) \dagger^{20}$ and $\quad+1=\left(\dagger^{2}+3 \dagger+1\right)\left(\dagger^{2}+4 \dagger+1\right)\left(\dagger^{4}+\dagger^{3}+6 \dagger^{2}+3 \dagger+1\right)\left(\dagger^{4}+3 \dagger^{3}+6 \dagger^{2}+\dagger+1\right)$ $\left(\dagger^{4}+4 \dagger^{3}+6 \dagger^{2}+6 \dagger+1\right)\left(\dagger^{4}+6 \dagger^{3}+6 \dagger^{2}+4 \dagger+1\right)$. For a $6+2 \widetilde{\xi}$-constacyclic code \mathfrak{E} over R with length 20 .

Let $h_{1}(\dagger)=(\dagger+6)$ and $h_{2}(\dagger)=\left(\dagger^{2}+3 \dagger+1\right)$, then $g(\dagger)=(1+\widetilde{\xi})(\dagger+6)$ $(1+\tilde{\xi})\left(\dagger^{2}+3 \dagger+1\right)$ is generator polynomial of \mathfrak{E}. Since $h_{1}(\dagger) h_{1}^{*}(\dagger) \mid \dagger^{20}-1$ and $h_{2}(\dagger) h_{2}^{*}(\dagger) \mid \dagger^{20}-1$, then due to Theorem 4.6, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further, $\Psi(\mathfrak{E})$ is a [40, 37, 3] linear code. Theorem 4.9, implies that parameters of quantum code are $[40,34, \geq 3]_{7}$.

Example 5.3. In $\mathbb{Z}_{11}(\dagger), \dagger^{18}-1=(\dagger+1)(\dagger+10)\left(\dagger^{2}+\dagger k+1\right)\left(\dagger^{2}+10 \dagger+\dagger 1\right)$ $\left(\dagger^{6}+\dagger^{3}+1\right)\left(\dagger^{6}+10 \dagger^{3}+1\right) \quad$ and $\quad \dagger^{18}+1=\left(\dagger^{2}+1\right)\left(\dagger^{2}+5 \dagger+1\right)\left(\dagger^{2}+6 \dagger+1\right)$ $\left(\dagger^{6}+5 \dagger^{3}+1\right)\left(\dagger^{6}+6 \dagger^{3}+1\right)$. For a $(10+2 \widetilde{\xi})$-constacyclic code \mathfrak{E} over R with length 20.

Let $\quad h_{1}(\dagger)=\left(\dagger^{2}+10 \dagger+1\right) \quad$ and $\quad h_{2}(\dagger)=\left(\dagger^{2}+6 \dagger+1\right)$, then $g(\dagger)=(1+\widetilde{\xi})\left(\dagger^{2}+10 \dagger+1\right)+(1-\widetilde{\xi})\left(\dagger^{2}+6 \dagger+1\right)$ is generator polynomial of \mathfrak{E}. Since $h_{1}(\dagger) h_{1}^{*}(\dagger) \mid \dagger^{18}-1$ and $h_{2}(\dagger) h_{2}^{*}(\dagger) \mid \dagger^{18}+1$, then due to Theorem 4.6, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further, $\Psi(\mathfrak{E})$ is a $[36,32,3]$ linear code. Theorem 4.9, implies that parameters of quantum code are $[36,28, \geq 3]_{11}$.

Example 5.4. In $\mathbb{Z}_{11}(\dagger), \dagger^{18}-1=(\dagger-1)(\dagger+10)\left(\dagger^{2}+\dagger+1\right)\left(\dagger^{2}+10 \dagger+1\right)$ $\left(\dagger^{2}+\dagger^{3}+1\right)\left(\dagger^{6}+10 \dagger^{3}+1\right)$ and $\dagger^{18}+1=\left(\dagger^{2}+1\right)\left(\dagger^{2}+5 \dagger+1\right)\left(\dagger^{2}+6 \dagger+1\right)$ $\left(\dagger^{2}+5 \dagger^{3}+1\right)\left(\dagger^{6}+6 \dagger^{3}+1\right)$. For a $(10+2 \widetilde{\xi})$-constacyclic code \mathfrak{E} over R with length 20 .

Let $h_{1}(\dagger)=\left(\dagger^{6}+\dagger^{3}+1\right)$ and $h_{2}(\dagger)=\left(\dagger^{2}+1\right)$, then $g(\dagger)=(1+\tilde{\xi})\left(\dagger^{6}+\dagger^{3}+1\right)$ $+(1-\widetilde{\xi})\left(\dagger^{2}+1\right)$ is generator polynomial of \mathfrak{E}. Since $h_{1}(\dagger) h_{1}^{*}(\dagger) \mid \dagger^{18}-1$ and
$h_{2}(\dagger) h_{2}^{*}(\dagger) \mid \dagger^{18}+1$ then due to Theorem 4.6, $\mathfrak{E}^{\perp} \subseteq \mathfrak{E}$. Further, $\Psi(\mathbb{E})$ is a $[36,28,4]$ linear code. Theorem 4.9, implies that parameters of quantum code are $[36,20, \geq 4]_{11}$.

References

[1] A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A 54(6) (1996), 4741.
[2] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory 44(4) (1998), 1369-1387.
[3] J. Gao and Y. Wang, u-Constacyclic codes over $\mathbb{F}_{p}+u \mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process 17(122) (2018), 1-19.
[4] J. Qian, Quantum codes from cyclic codes over $F_{2}+v F_{2}$, J. Inf. Comput. Sci. 10(6) (2013), 1715-1722.
[5] J. Qian, W. Ma and W. Guo, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf. 7(06) (2009), 1277-1283.
[6] M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $F_{p}+v F_{p}$, Int. J. Inf. Coding Theory 3(2) (2015), 137-144.
[7] M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $F_{3}+v F_{3}$, Int. J. Quantum Inf. 12(06) (2014), 1450042.
[8] M. Ashraf and G. Mohammad, Quantum codes over F_{p} from cyclic codes over $F_{p}[u, v\rangle\left\langle u^{2}-1, v^{3}-v, u v-v u\right\rangle$, Cryptogr. Commun. 11 (2019), 325-335.
[9] R. Li and Z. Xu , Construction of $[n, n-4,3]_{q}$ quantum codes for odd prime power q, Phys. Rev. A 82(5) (2010), 052316.
[10] S. A. Aly, A. Klappenecker and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inf. Theory 53(3) (2007), 1183-1188.
[11] S. Zhu and L. Wang, A class of constacyclic codes over $F_{p}+v F_{p}$, and its Gray image, Discrete Math. 311(23-24) (2011), 2677-2682.
[12] Y. Liu, R. Li, L. Lv et al., A class of constacyclic BCH codes and new quantum codes, Quantum Inf. Process 16(66) (2017).
[13] X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $F_{4}+u F_{4}$, Int. J. Quantum Inf. 9(02) (2011), 689-700.

