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Abstract 

In this paper, we introduce the difference sequence space  PM ,,,   and 

 GPM ,,,,   of fuzzy real numbers using the Orlicz function. We also discussed some of 

the linear topological properties of the space and demonstrated  GPM ,,,,   is complete 

by defining a new paranorm on it. 

Introduction 

In 1965, L. A. Zadeh [24] developed the fuzzy set theory to address 

ambiguity and uncertainty in mathematics. Since then, both pure and applied 

fuzzy mathematics have been the subject of extensive research. The sequence 

space of fuzzy real numbers is the area where the majority of research has 

been conducted. Sequence space refers to a linear subspace of a vector space. 
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According to Motloka [9], who has studied the boundedness of fuzzy numbers, 

every convergent sequence of fuzzy numbers is bounded. After that, Nanda 

[10] introduced a class of sequences of fuzzy numbers and studied their 

various properties. 

Kizmaz [7], first introduced the idea of difference sequence space in 1981. 

Et and Colka [3] broadened the concept of Kizmaz. Then, Burch and Tripathy 

[1] applied this overarching concept to the fuzzy domain. The authors [4], [5], 

[6], [7], [15], [16] have studied difference sequence space. 

A function     ,0,0:M  satisfying the following conditions 

    0,00  tMM  and   0tM  as t  

and is continuous, non-decreasing, and convex is called an Orlicz function. 

Wladyslaw first discussed the Orlicz function in 1932. Then 

Lindenstrauss and Trzafriri [8] used the Orlicz function concept to define a 

new sequence space that is defined as 

 

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Mxl  for some .0  

The space Ml  together with the norm x  defined by 
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
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

1
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k

x
Mx  becomes a Banach space and it is 

called Orlicz sequence space. 

In the concept of Orlicz function and fuzzy set theory, Sarma [17], 

Parashar and Choudhary [12], Paudel, Sahani and Pahari [14], Savas and 

Savas [18], Subraninan et al. [19], Tripathy and Borgohain [21-22], Tripathy 

and Sarma [23] and many more have contributed to the field of difference 

sequence spaces of fuzzy numbers through Orlicz function. In this paper, we 

introduce a class of sequence space and study some of its topological 

properties, and by defining a paranorm, we test the completeness property of 

the class. For this, we need some definitions, which are defined below.  

Definition and Preliminaries 

Let  be the universal set and    then the collection of pairs 
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        xxx ,1,0::,   

defines as fuzzy set  or . 

The function   is called the membership function and  xX  is called 

the degree of the element x belonging to the set . Here, if   0x  then x 

is not included in , and if   1xx  then x is fully included in . So that 

 x  is defined as 

 

 















.orwhetherambiguityisthereif1,0

ambiguitynoisthereandif1

ambiguitynoisthereandif0









xx

x

x

x  

Let  be the set of all bounded intervals  yx,  on the real line . Then 

for any 21, DD  with  111 , yxD   and  222 , yxD   then 21 DD   if 

12 xx   and .21 yy   Define a relation d on  by  21, DDd  

 .,max 1212 yyxx   

Then clearly, d defines a metric in  and obviously  d,  is a complete 

metric space. 

A fuzzy real number  is a fuzzy set, or a mapping between each real 

number    and its membership value  ,t  where  1,0:  I  such 

that  

The fuzzy number  is  

i. normal if there exists t  such that   1t  

ii. convex if for st,  and        stst  ,min1,10    

iii.  is upper semi-continuous if for   ,,0,0 1   a  for all ,Ia   

is open in the usual topology of . 

The -level [14] set on  is denoted by   and defined by 

  .:  ttF   
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The collection of all fuzzy numbers with membership values greater than 

zero is referred to as support fuzzy a number. 

Assume that  I  represents the collection of all fuzzy numbers with 

upper semi-continuity and compact support. 

Now, let us consider a relation       II:  defined by 

   



  ,,
10

dSup  

where  .0   

Then,   defines a metric on  I  and   ,I  is a complete metric 

space.  

Paranormed Space [11]. Let X be a vector space. A function  X:  

satisfying the following  

i.   00   

ii.   0 x  for all .Xx   

iii.    xx   for all .Xx   

iv.      ,yxyx   for all ., Xyx   

v. if  na  is a sequence of scholars with aan   as n  and  nx  is a 

sequence of such that   0 xxn  as n  then   0 axxa nn  as 

n  (continuity of scholar multiplication) is called paranormed and  ,X  

is paranormed space. 

We note that a paranorm  with   0 x  implies 0x  is called total.  

Bounded fuzzy set. A fuzzy set A in  is said to be bounded above if 

there exists a fuzzy number M in  such that Ma   for all Aa   and M is 

called upper bound for A. 

The fuzzy number M is called the supremum of A if M is an upper bound 

of A and WM   for any upper bound W of A and we write .sup aM
Aa

   
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Also, fuzzy set A in  is said to be bounded below if there exists a fuzzy 

number m in X such that mb   for all Ab   and m is called lower bound for 

A. 

The fuzzy number m is called the infimum of A if m is an upper bound 

above of A and Wm   for any lower bound W of A and we write .inf bm
Ab

  

A sequence of fuzzy numbers  k   is said to be bounded if the set 

 kk :  is bounded. 

A sequence  k   of fuzzy numbers is said to converge to a fuzzy 

number o  and we write ok
k

 lim  if, for every ,0  there exists a 

positive integer   nn0  such that    ok  ,  for all .onk   

Limit supremum and limit infimum[20]. Let  k   be a bounded 

sequence of fuzzy numbers. The limit infimum and supremum of the 

sequence are defined as  

k
nkn

k 


 infliminflim  and .suplimsuplim k
nkn

k 


  

We note that the limit infimum or limit supremum of the bounded 

sequence of fuzzy numbers may not exist. 

Let    denote the set of all sequences of fuzzy numbers. Then any 

subsequence of    is sequence space and is called fuzzy sequence space.  

Difference Sequence Space.  

In 1981, Kizmaz [8] used the concept of difference sequence space for the 

first time as follow  

     ll k  :  

   CC k   :  

   ,: oko CC    where .1 kk   

The concept of Kizmaz difference sequence spaces was generalized by 

Colka and Et [6] to define the sequence spaces      m
o

mm CCl  ,,  in 1995. 
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To examine the diverse properties of the difference sequence spaces 

   mFmF Cl  ,  and  mF
oC   of fuzzy numbers, Baruah and Tripathy [1] 

established the notation of difference operator m  in 2009. 

To study topological properties of difference sequence space of fuzzy real 

numbers using Orlicz function we use the notation  PM ,,,   and 

 GPM ,,,,   for a classes of difference sequences. 

Let  kpP   and  kqQ   be any two sequences of strictly positive real 

numbers and  k  be a sequence of non-zero real numbers. Now we introduce 

the following classes of fuzzy sequences as follows: 

   
































 


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




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
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
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




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0somefor:,,,,

k

p
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k

MFXGPM




 

where, .sup Gpk
k

  

Then, clearly  GPM ,,,,   is subset of  .,,, PM   

Main Work 

Lemma 1[2]. Let  kp  be a bounded sequence of strictly positive real 

numbers with  12,1max,sup0  HLpp kk  then 

i.  ;kkk ppp   H  

ii.    .,1max
Lpka   

Theorem 1. The class  PM ,,,   is a linear space. 

Proof. Suppose  k   and  k   be two elements of 

 .,,, PM   Then there exists 01   and 02   such that, 
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



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Let us choose 03   for scholars a and b such that 

 a,1max2

1

23 




H
 and 

 
,

,1max2

1

23 a
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 where, Lpk sup  

and  .2,1max 1 LH  

Then 
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
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
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
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k

p
kk

p
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kk GbFaM  

 PMba ,,,    for  PM ,,,,    and hence the 

class is linear. 

Theorem 2. If  kk qp0  for all but finitely many values of k, then 

   .,,,,,, QMPM    

Proof. Let    ,,,, PMk    then there exists 0  such that  








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













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.

k

p
kk

k

M


 (*) 

This relation shows that there exists 1K  such that 1 kk   for 

all .Kk   Since, ,kk qp   we have kk p
kk

q
kk    for every 

.Kk   

Since M is a non-decreasing function, we have 
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

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 for .0  

Hence,    QMk ,,,    and hence  PM ,,,   

 QM ,,,    proved. 

Theorem 3. The sequence space  PM ,,,   is solid. 

Proof. Let    ,,,, PMk    then there exists 0  such that  


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Let  kaa   be a sequence of scalars such that 1ka  for all .1k  

Since M is non-decreasing, we have  
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Thus,    PMkk ,,,    for all sequences  ka  of scholars with 

,1ka  whenever    .,,, PMk    So  PM ,,,   is solid.  

Theorem 4. Let    ,,,,, GPMk    then the space 

 GPM ,,,,   is a paranorm space with the paranorm defined by 
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(**) 

where, .sup Gpk
k

  

Proof. i. ,1NP   clearly, we can see that   .00   
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ii.  
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 X  

iii. For,  ,,,,,, GPM    let us choose  21,   in such that, 

























1
1

1
k

Gp
kk

k

M


 and 























1
.1

k

Gp
kk

k

M


 

Let 213   then, ,03   and  

   
 







 














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



















1 1 213k k
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kkk
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

 

 






 













































1 1 221

2
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1

k k

Gp
kk

Gp
kk
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MM


 

111
21

2

21

1 








  

 


























1 3
.1

k

Gp
kkk

k

M


 

This relation shows that  .321   Thus we have,  

  21    for  1  and  .2   

i.e.,   21    

i.e.,      .   

Hence the triangle inequality holds. 

P. :4N  Suppose  n
k

n    be a sequence in  GPM ,,,,   such 

that   0 n  as n  and  n  be a sequence of scholar such that 

.n  Then 
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kknn

n
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M

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



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











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








 



1
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k
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kkp

k

k

kM


 

,1:inf
1 































 



k

Gpn
kkp

k

kDM


 

where .sup n
n

D   

Then for  ,,1max Dr   we have, 

  .1:inf
1 





























 



k

Gpn
kkn

n

kr
M


  Taking s

r



 then 

0s  and   .1:inf
1 





























 



k

Gpn
kkn

n

k

Mrs


  

  0 nr   as .n  

  0 n
n  as .n  

Now, let  n  be a sequence scalar such that 0n  as n  then for 

 with ,10   we can find a positive integer N such that n  for all 

Nn   and let    .,,,, GPMk    

 












































1 1k k

Gp
kk

Gp
n

Gp
kkn

kkk

MM


 
























1

,

k

Gp
kk

Gl k

M


 where .0lim  lpk
k

 

This relation shows that if    Gl  then   n  and so 

   . n
Gl   
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      Gl
n  :0inf:0inf  

   :infGl  

     Gl
n  for all ,Nn   which implies that   0 n  as 

.n  

Thus  satisfies all the conditions of paranorm on  GPM ,,,,   and 

hence    ,,,,, GPM  is a paranorm space. 

Theorem 5. The sequence space    ,,,,, GPM  is complete 

paranormed space with the paranorm defined in (**). 

Proof. Let  n
k

n    be a Cauchy sequence in   .,,,,,  GPM  

Then there exists 0  such that for all  ZNnm,  we have  

   m
k

n
k   

By the definition of paranorm we see that,  

   
























1

1

k
m
k

n
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Gpm
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n
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M



 for all Nnm ,  

Let us choose a fixed real number 0r  such that   .1rM  Then 

   
 rMM

m
k

n
k

Gpm
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n
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k



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

















 for all Nnm ,  and for all .1k  

Since M non-decreasing, we have 

   
Nnmr

m
k

n
k

Gpm
kk

n
kk

k



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
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Or,   Nnm
r m

k
n
kGp

k

Gpm
k

n
k

k

k 


 ,  

 
  .,,say Nnm

r

k

p

G

m
k

n
k

k 



   
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This shows that  n
k  is a Cauchy sequence in  .I  Since  I  is 

complete, so the sequence  n
k  converges in  I  say k

n
k    as 

.k  To complete the proof we show that 

    .,,,,,  GPMk   

Let us choose 0  such that    m
k

n
k XX  for all ., Nnm   

Then, 

 
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 for all ., Nnm   

Taking limit as m  we get, 
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 for all .Nn   

This relation is true for all such ,0  so taking infimum of such ’s, we 

get  
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Thus 
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  for 

all .Nn   

   n  for all .Nn   

This shows that . n  
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Also, we have  

0 n  as n  

0 n
k  as n  

 
0




Gpn

k
k

 as n  

By the continuity of M, we have  

 
 0MM
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 as n  

Then we have 
 



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



1k

Gpn
k

k
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So that,  .,,,, GPMn     

Since,  GPM ,,,,   is linear space,   nn    

 ,,,,, GPM    that is  .,,,, GPM    Hence  n  in 

 .,,,, GPM   So the space    ,,,,, GPM  is complete 

paranormed space. 

Conclusion 

In this paper, the Orlicz is used to investigate some topological properties 

classes  PM ,,,   and  GPM ,,,,   of fuzzy real numbers. We have 

investigated the solidity, inclusion relation, and linear property of these 

classes. Finally, we have defined a paranorm for the completeness properties 

of class  .,,,, GPM   
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