NON-NEGATIVE ISOLATED SIGNED DOMINATING FUNCTION OF GRAPHS

N. JAYALAKSHMI ${ }^{1}$, P. THANGARAJ ${ }^{2}$ and DURAISAMY KUMAR ${ }^{3}$,*

${ }^{1}$ Department of Mathematics
Research Scholar, Bharathiar University
Coimbatore-641046, Tamil Nadu, India
E-mail: jayaanand6@gmail.com
${ }^{2}$ Department of Computer Science and Engineering
KPR Institute of Engineering and Technology
Coimbatore-641407, Tamil Nadu, India
E-mail: ctptr@yahoo.co.in
3,*Department of Mathematics
SRM TRP Engineering College
Tiruchirapalli-621105, Tamil Nadu, India

Abstract

A function $\lambda: V(G) \rightarrow\{-1,+1\}$ is said to be a non-negative isolated signed dominating function(NNISDF) of a graph G if $\sum_{u \in N[v]} \lambda(u) \geq 0$ for all $v \in V(G)$ and for at least one vertex of $w \in V(G), \lambda(N[w])=0$. A Non-negative isolated signed domination number(NNISDN) of G, denoted by $\gamma_{i s}^{N N}(G)$, the minimum weight of a NNISDF of G. In this article, we study some of the basic properties of NNISDF and we give NNISDN of disconnected graphs, paths, completegraph and some families of graphs.

1. Introduction

Let $G(p, q)$ be a finite, simple and undirected graphs. The vertex set and edge set of a graph G is denoted by $V(G)$ and $E(G)$ respectively, $p=|V(G)|$

2020 Mathematics Subject Classification: 05C69.
Keywords: Isolated domination, signed dominating function, non-negative signed dominating function, non-negative isolated signed dominating function.
*Corresponding author; E-mail: dkumarcnc@gmail.com, kumar.d@trp.srmtrichy.edu.in Received October 20, 2022; Revised March 5, 2023; Accepted March 6, 2023
and $\quad q=|E(G)|$. For $\quad v \in V(G)$, the open neighborhood of v is $N(v)=\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. The degree of v is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is called a pendent vertex.

A vertex which is adjacent to a pendent vertex is called a stem. For graph theoretic terminology, we follow [7].

Lot of domination function have been defined and studied by many authors. The definition of dominating function by replacing the co-domain $\{0,1\}$ as one of the sets $\{-1,0,1\},\{-1,+1\}$ and etc.

In 1995, J. E. Dunbar et al. [3] introduced the concept of signed dominating function (SDF). A function $\lambda: V(G) \rightarrow\{-1,+1\}$ is a SDF of G, if for all $v \in V(G), \lambda(N[v]) \geq 1$. The signed domination number, denoted by $\lambda_{s}(G)$, is the minimum weight of a signed dominating function on G [3]. The SDF has been studied by several authors including $[1,2,5,6,10]$.

A function $\lambda: V(G) \rightarrow\{-1,+1\}$ is said to be a non-negative signed dominating function (NNSDF) of G if $\lambda(N[v]) \geq 0$ for $v \in V(G)$. The nonnegative signed domination number of $\gamma_{s}^{N N}(G)$ is the minimum weight of a NNSDF of G. A NNSDF of weight $\gamma_{s}^{N N}(G)$ is called a $\gamma_{s}^{N N}(G)$-function. The nonnegative signed domination number was introduced by Huang et al. [9].

A subset S of vertices of a graph G is a dominating set of G if every vertex in $\lambda(N[v]) \geq 0$ has a neighbor in S . The minimum cardinality of a dominating set of G as called the domination number and is denoted by $\gamma(G)$.

A dominating set S of a graph G is said to be an isolate dominating set if $\langle S\rangle$ has at least one isolated vertex [11]. An isolate dominating set S is said to be minimal if no proper subset of S is an isolate dominating set. The minimum and maximum cardinality 2 of a minimal isolate dominating set of G are called the isolate domination number $\gamma_{0}(G)$ and the upper isolate domination number $\Gamma_{0}(G)$ respectively [11].

In 2022, Duraisamy Kumar et al. [4] defined the concept of non-negative unique isolated signed dominating function(NNUISDF). A NNUISDF of a graph G is a function $\lambda: V(G) \rightarrow\{-1,+1\}$ such that $\sum_{u \in N[v]} \lambda(u) \geq 0$ for $v \in V(G)$ and for at exactly one vertex $w \in V(G), \lambda(N[w])=0$.

In this paper, we defined non-negative isolated signed dominating function(NNISDF). A NNISDF of a graph G is a function $\lambda: V(G) \rightarrow\{-1,+1\}$ such that $\sum_{u \in N[v]} \lambda(u) \geq 0$ for $v \in V(G)$ and for at least one vertex $w \in V(G), \lambda(N[w])=0$. A non-negative isolated signed domination number(NNISDFN) of G, denoted by $\gamma_{i s}^{N N}(G)$, is the minimum weight of a NNISDF of G. In this article, we study some of the basic properties of NNISDF and we give NNISDN of disconnected graphs, paths, completegraph and some families of graphs.

2. Main Results

Lemma 1. If a graph G admits NNISDF, then $\gamma_{s}^{N N}(G) \leq \gamma_{i s}^{N N}(G)$.
Proof. We know that all the NNISDF is a NNSDF, we have $\gamma_{s}^{N N}(G) \leq \gamma_{i s}^{N N}(G)$.

Theorem 2. Let G be a disconnected graph of order $n \geq 2$ with n components $G_{1}, G_{2}, \ldots, G_{n}$ such that the first $m(\geq 1)$ components $G_{1}, G_{2}, \ldots, G_{n} \quad$ admit \quad NNISDF. Then $\quad \gamma_{i s}^{N N}(G)=\min _{1 \leq i \leq m}\left\{t_{i}\right\}$, where $t_{i}=\gamma_{i s}^{N N}\left(G_{i}\right)+\sum_{j=1, j \neq i}^{n} \gamma_{s}^{N N}\left(G_{j}\right)$.

Proof. Assume that $t_{1}=\min _{1 \leq i \leq m}\left\{t_{i}\right\}$. Let λ_{1} be a minimum NNISDF of G_{1} and λ_{i} be a minimum NNSDF of G_{i} for each i with $2 \leq i \leq n$. Then $\lambda: V(G) \rightarrow\{-1,+1\}$ defined by $\lambda(x)=\lambda_{i}(x)$, is an NNISDF of G with weight $\gamma_{i s}^{N N}\left(G_{1}\right)+\sum_{i=2}^{n} \gamma_{s}^{N N}\left(G_{i}\right)$ and so $\gamma_{i s}^{N N}(G) \leq \gamma_{i s}^{N N}\left(G_{1}\right)+\sum_{i=2}^{n} \gamma_{s}^{N N}\left(G_{i}\right)=t_{1}$.

Let μ be a minimum NNISDF of G. Then there exists an integer j such that $\mu \mid G_{j}$ is a minimum NNISDF of G_{j} for some j with $1 \leq j \leq m$. Also for each i with $1 \leq i \leq n(i \neq j), \mu \mid G_{i}$ is a minimum NNSDF of G_{i}. Therefore $w(\mu) \geq \gamma_{i s}^{N N}\left(G_{j}\right)+\sum_{i=1, i \neq j}^{n} \gamma_{s}^{N N}\left(G_{i}\right)=t_{j} \geq t_{1}$ and hence $\gamma_{i s}^{N N}(G)=\min _{1 \leq i \leq m}\left\{t_{i}\right\}$.

Corollary 3. Let H be any graph which does not admit NNISDF. Then $w(\mu) \geq \gamma_{i s}^{N N}\left(G_{j}\right)+\sum_{i=1, i \neq j}^{n} \gamma_{s}^{N N}\left(G_{i}\right)=t_{j} \geq t_{1} \quad$ admits NNISDF with $\gamma_{i s}^{N N}=\gamma_{s}^{N N}(H)$.

Proof. By taking $G_{i} \cong K_{2}$ for $1 \leq i \leq m$ and $G_{m+1} \cong H$ in Theorem 2, we can prove the result.

Lemma 4. If every vertex of the graph is even, then it has no NNISDF.
Proof. Since $|N[v]|$ is odd, $f(N[v]) \neq 0$ for any NNSDF $\lambda: V \rightarrow\{-1,+1\}$.

Lemma 5. Let λ be a NNISDF of G and let $P \subset V$. Then $\lambda(P)=|P|(\bmod 2)$.

Proof. Let $P^{+}=\{v \mid \lambda(v)=1, v \in P\}$ and $P^{-}=\{v \mid \lambda(v)=-1, v \in P\}$. Then $\quad\left|P^{+}\right|+\left|P^{-}\right|=|P| \quad$ and $\quad\left|P^{+}\right|-\left|P^{-}\right|=\lambda(P)$. Therefore $\lambda(P)=|P|-2\left|P^{-}\right|$.

Lemma 6. Let G be a graph of order n. Then $2 \gamma(G)-n \leq \gamma_{i s}^{N N}(G)$.
Proof. Assume that G has an NNISDF and let λ be a minimum NNISDF of G. Let $P^{+}=\{u \in V(G): f(u)=+1\}$ and $P^{-}=\{v \in V(G): f(v)=-1\}$. If $P^{-}=\phi$, then no vertex has $\lambda(N[v]) \neq 0$, a contradiction.

If $v \in P^{-}$since $\lambda(N[v]) \geq 0$, then v has at least one neighbor in P^{+}. Therefore P^{+}is a dominating set for G and $\left|P^{+}\right| \geq \gamma(G)$.

Since $\quad \gamma_{i s}^{N N}(G)=\left|P^{+}\right|-\left|P^{-}\right| \quad$ and $\quad n=\left|P^{+}\right|+\left|P^{-}\right|, \quad$ then $\gamma_{i s}^{N N}(G)=2\left|P^{+}\right|-n$ and finally we have $\gamma_{i s}^{N N}(G) \geq 2 \gamma(G)-n$.

Theorem 7. Let G be a connected graph of order $n \geq 2$ in which every vertex is a pendent vertex or stem. Then G admits NNISDF.

Proof. Suppose there exists a NNISDF of G, say ' λ '. Let $u \in V(G)$.
Case 1. A pendent vertex has an NNISDF. Assigning the pendent vertex -1 sign and the other vertices +1 sign gives an NNISDF.

Case 2. If u is a stem, then u is adjacent with some pendent vertex, say w. By Case $1, \lambda(w)=+1$.

Hence λ is a constant function with constant 0 . Since G is connected graph of order greater than or equal to $2, \lambda(N[v]) \geq 0$ for $v \leq V(G)$.

Thus there exist vertex v of G such that $\lambda(N[v])=0$.
Corollary 8. Let H be any graph and $G=H \circ K_{1}$, then G admits NNISDF.

Proof. Since every vertex of G is a stem or pendent, the proof follows from Theorem 7.

Remark 9. Let G be a graph of order n which admits NNISDF. Then $\gamma_{i s}^{N N}(G) \neq n-1$.

Proof. Let λ be a minimum NNISDF of G. Suppose $\lambda(u)=+1$ for all $u \in V(G)$, then $\lambda(N[u]) \neq 0$, a contradiction.

Suppose $\lambda(u)=-1$ for some $u \in V(G)$, then $\gamma_{i s}^{N N}(G) \leq n-2$.
Theorem 10. Let $n \geq 3$ be an integer. Then the path P_{n} admits NNISDF with NNISDN
(1) $\gamma_{i s}^{N N}\left(P_{n}\right)=m$ when $n=3 m$.
(2) $\gamma_{i s}^{N N}\left(P_{n}\right)=m$ when $n=3 m+2$.
(3) $\gamma_{i s}^{N N}\left(P_{n}\right)=m$ when $n=2 m+2$.

2274 N. JAYALAKSHMI, P. THANGARAJ and DURAISAMY KUMAR
Proof. Let $n \geq 3$ be an integer. Let $V\left(P_{n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\}$. Let λ be a NNISDF. Since $N\left[a_{i}\right]=\left\{a_{i-1}, a_{i}, a_{i+1}\right\}$ and $\lambda\left(N\left[a_{i}\right]\right) \geq 1$ for $2 \leq i \leq n-1$, any three consecutive vertices must have at least two +1 signs. (1)

Case 1. Suppose $n=3 m$. Then by (1), $w(\lambda) \geq m$.
Case 2. Suppose $n=3 m+1$. Suppose $\lambda\left(a_{3 m+1}\right)=-1$. Then by (1), we get $\lambda\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \geq 1, \lambda\left(\left\{a_{4}, a_{5}, a_{6}\right\}\right) \geq 1, \lambda\left(\left\{a_{7}, a_{8}, a_{9}\right\}\right) \geq 1, \ldots$, $\lambda\left(\left\{a_{3(m-1)}, a_{3 m-2}, a_{3 m-1}\right\}\right) \leq 1 . \quad$ Suppose $\quad \lambda\left(a_{3 m}\right)=-1 \quad$ then $\lambda\left(\left\{a_{3 m-1}, a_{3 m}, a_{3 m+1}\right) \leq-1\right.$, a contradiction to (1). Thus $w(\lambda) \geq m-1$ when $w(\lambda) \geq m$.

Case 3. Suppose $n=3 m+2$. By (1) both $\lambda\left(a_{3 m+1}\right)$ and $\lambda\left(a_{3 m+2}\right)$ simultaneously can not be equal to -1 . Suppose $\lambda\left(a_{3 m+1}\right)=+1$ and $\lambda\left(a_{3 m+2}\right)=+1$, then by (1) we can get $w(\lambda) \geq m+2$.

Suppose $\quad \lambda\left(a_{3 m+1}\right)=-1$. Then by
$\lambda\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \geq 1, \lambda\left(\left\{a_{4}, a_{5}, a_{6}\right\}\right) \geq 1, \lambda\left(\left\{a_{7}, a_{8}, a_{9}\right\}\right) \geq 1, \ldots$,
$\lambda\left(\left\{a_{3(m-1)}, a_{3 m-2}, a_{3 m-1}\right\}\right) \geq 1$. Suppose $\quad \lambda\left(a_{3 m+2}\right)=-1 \quad$ then $\lambda\left(\left\{a_{3 m}, a_{3 m+1}, a_{3 m+2}\right\}\right) \leq-1$, a contradiction to (1). Thus $\lambda\left(a_{3 m+2}\right)=+1$ and so $w(\lambda) \geq m$.

Define a function $\mu: V\left(P_{n}\right) \rightarrow\{-1,+1\}$ by

$$
\mu\left(a_{i}\right)= \begin{cases}-1 & \text { when } i=3 \ell+1,0 \leq \ell \geq m-1 \\ +1 & \text { otherwise } .\end{cases}
$$

From the above labeling it is easy to observe that μ is a NNISDF and $w(\mu)=m \quad$ when $n=3 m, w(\mu)=m-1 \quad$ when $n=3 m, w(\mu)=m-1 \quad$ and $w(\mu)=m \quad$ when $\quad n=3 m+2$. Thus we have $\gamma_{i s}^{N N}\left(P_{3 m}\right) \leq m$, $\gamma_{i s}^{N N}\left(P_{3 m+1}\right) \leq m-1$ and $\gamma_{i s}^{N N}\left(P_{3 m}\right) \leq m$.

Corollary 11. For given integer $m \geq 1$, there exists a graph G such that $\gamma_{s}^{N N}=\gamma_{i s}^{N N}(G)=m$.

Proof. Let $G=P_{3 m}$ be a path of order $3 m$ such that $V(G)=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$ and $E(G)=\left\{a_{i} a_{i+1}: 1 \leq 3 m-1\right\} \cup\left\{a_{3 m} a_{1}\right\}$.

Let λ be a NNSDF of G. Since $N\left[a_{i}\right]=\left\{a_{i-1}, a_{i}, a_{i+1}\right\}$ for $2 \leq i \leq 3 m-1$ and $\lambda\left(N\left[a_{i}\right]\right) \geq 1$, any three consecutive vertices must have at least two +1 signs. In this case $\lambda\left(N\left[a_{1}\right]\right)=0$ or $\lambda\left(N\left[a_{3 m}\right]\right)=0$.

Thus $\lambda(V(G)) \geq m$.
Define a function $\mu: V(G) \rightarrow\{-1,+1\}$ by

$$
\mu\left(v_{i}\right)= \begin{cases}-1 & \text { when } i=3 \ell, \ell \geq 1 \\ +1 & \text { otherwise } .\end{cases}
$$

From the above labeling it is easy to observe that μ is NNSDF and $w(\mu)=m$. Thus $\gamma_{i s}^{N N}(G)=m$.

The graph G admits NNISDF and $\gamma_{i s}^{N N}(G)=m$ (already proved in Theorem 10).

Theorem 12. Let $n \geq 4$ be an even integer. Then the complete graph K_{n} admits NNISDF with $\gamma_{i s}^{N N}\left(K_{n}\right)=0$.

Proof. Let $V\left(K_{n}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let λ be a minimum NNISDF of K_{n}. By the definition of NNISDF at least one vertex has $\lambda(N[\alpha])=0$ for $a \in V\left(K_{n}\right)$. Note that $N[\alpha]=\left|V\left(K_{n}\right)\right|$ for $a \in V\left(K_{n}\right)$. Therefore $\frac{n}{2}$ vertices must have +1 sign and $\frac{n}{2}$ vertices must have -1 sign. Thus $w(\lambda)=\frac{n}{2}(+1)+\frac{n}{2}(-1)=0$ and so $\gamma_{i s}^{N N}\left(K_{n}\right) \geq 0$.

Define $\mu: V\left(K_{n}\right) \rightarrow\{-1,+1\}$ by

$$
\mu\left(v_{i}\right)=\left\{\begin{array}{cc}
+1 & \text { when } i \text { is odd } \\
-1 & \text { when } i \text { is even. }
\end{array}\right.
$$

From the above labeling it is easy verify that μ is NNISDF and
$\mu(N[a])=0$ for all $a \in V\left(K_{n}\right)$. In this case $w(\mu)=\frac{n}{2}(+1)+\frac{n}{2}(-1)=0$ and so $\gamma_{i s}^{N N}\left(K_{n}\right) \leq 0$.

Lemma 13. For an odd integer $m(\geq 1)$, then the graph $G=K_{m, n}$ admits NNISDF with

$$
\gamma_{i s}^{N N}\left(K_{m, n}\right)= \begin{cases}0 & \text { if } m=1 \text { and } n \text { is odd } ; \\ 1 & \text { if } m=1 \text { and } n \text { is even; } \\ 2 & \text { if } m \geq 3 \text { and } n \geq 3 \text { is odd } ; \\ 3 & \text { if } m \geq 3 \text { and } n \text { is even. }\end{cases}
$$

Proof. Let $G=\left(G_{1}, G_{2}\right)$ be the bipartition of G such that $\left|G_{1}\right|=m$ and $\left|G_{2}\right|=m$. Let $G_{1}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $G_{1}=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. Consider the vertex a_{i} for $1 \leq i \leq m$.

Case 1. Suppose $m=1$ and n is odd say $2 n+1$. Since $N\left[a_{1}\right]=\left\{a_{1}, G_{2}\right\}$. In this case $\frac{n+1}{2}$ vertices must be labeled with -1 sign and $\frac{n-1}{2}$ vertices has been labeled with +1 sign and a_{1} has +1 sign.

Thus $\lambda\left(N\left[a_{1}\right]\right)=(+1)+\frac{n+1}{2}(-1)+\frac{n+1}{2}(-1)+\frac{n-1}{2}(+1)=0$.
Thus $w(\lambda)=0$ and so $\gamma_{i s}^{N N}(G) \geq 0$.
Case 2. Suppose $m=1$ and n is even. In this case $\frac{n}{2}$ vertices must be labeled with $-1 \operatorname{sign}$ and $\frac{n}{2}$ vertices has been labeled with +1 sign and a_{1} has +1 sign. Thus $\lambda\left(N\left[a_{1}\right]\right)=(+1)+\frac{n}{2}(-1)+\frac{n}{2}(+1)=1$. Thus $w(\lambda)=1$ and so $\gamma_{i s}^{N N}(G) \geq 1$.

Case 3. Suppose $m \geq 3$ and $n \geq 3$ is odd. In this case $\frac{m+1}{2}$ vertices must be labeled with +1 sign and $\frac{m-1}{2}$ vertices has been labeled with +1 sign and $\frac{n+1}{2}$ vertices must be labeled with +1 sign and $\frac{n-1}{2}$ vertices has
been labeled with -1 . Thus $w(\lambda)=\frac{m+1}{2}(+1)+\frac{m+1}{2}(+1)+\frac{n-1}{2}(-1)=2$ and so $\gamma_{i s}^{N N}(G) \geq 2$.

Case 4. Suppose $m \geq 3$ and $n \geq 3$ is even. In this case $\frac{m+1}{2}$ vertices must be labeled with +1 sign and $\frac{m-1}{2}$ vertices has been labeled with -1 sign and $\frac{m-1}{2}$ vertices must be labeled with +1 sign and $\frac{n}{2}-1$ vertices has been labeled with $-1 . \quad$ Thus $\quad w(\lambda)=\frac{m+1}{2}(+1)+\frac{m-1}{2}(-1)$ $+\left(\frac{n}{2}+1\right)(+1)+\left(\frac{n-1}{2}-1\right)(-1)=3$ and so $\gamma_{i s}^{N N}(G) \geq 3$.

We define a function $\mu: V=G_{1} \cup G_{2} \rightarrow\{-1,+1\}$ by

$$
\begin{aligned}
& \mu\left(a_{i}\right)= \begin{cases}+1 & \text { when } i \text { is odd } \\
-1 & \text { when } i \text { is even. }\end{cases} \\
& \mu\left(b_{i}\right)= \begin{cases}-1 & \text { when } i \text { is odd } \\
+1 & \text { when } i \text { is even. }\end{cases}
\end{aligned}
$$

It is easy to verify that G is a NNISDF with

$$
\gamma_{i s}^{N N}\left(K_{m, n}\right)= \begin{cases}0 & \text { if } m=1 \text { and } n \text { is odd } \\ 1 & \text { if } m=1 \text { and } n \text { is even } \\ 2 & \text { if } m \geq 3 \text { and } n \geq 3 \text { is odd }\end{cases}
$$

If $m \geq 3$ and $n \geq 3$, then we define a function $\mu: V=G_{1} \cup G_{2} \rightarrow\{-1,+1\}$ by

$$
\begin{gathered}
\mu\left(a_{i}\right)= \begin{cases}+1 & \text { when } i \text { is odd } \\
-1 & \text { when } i \text { is even. }\end{cases} \\
\mu\left(b_{i}\right)= \begin{cases}-1 & \text { when } i \text { if } 3 \leq \mathrm{i} \leq \mathrm{is} \mathrm{odd} \\
-1 & \text { otherwise } .\end{cases}
\end{gathered}
$$

From the above labeling, $\gamma_{i s}^{N N}\left(K_{m, n}\right)=3$.

2278 N. JAYALAKSHMI, P. THANGARAJ and DURAISAMY KUMAR
Theorem 14. Let $n \geq 2$ be an integer. Then the graph $G=K_{1, n}(n \geq 2)$ admits NNISDF with
(i) $\gamma_{\text {is }}^{N N}(G)=0$ when n is odd
(ii) $\gamma_{i s}^{N N}(G)=1$ when n is even.

Proof. Let $V(G)=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and $E(G)=\left\{a_{0} a_{i}: 1 \leq i \leq n\right\}$. Here, $a_{1}, a_{2}, \ldots, a_{n}$ an are pendent vertices. Let λ ba a minimum NNISDF of G. By the definition of NNISDF at least one vertex has +1 . for a $a \in V(G)$.

Case 1. Suppose n is odd. Then $N\left[a_{0}\right]=|V(G)|$ is even. In this case a_{0} must be labeled with +1 , sign, otherwise a contra-diction to λ. Therefore remaining $\frac{n-1}{2}$ vertices has -1 sign and $\frac{n-1}{2}$ vertices has +1 . In this case $\lambda\left(N\left[a_{0}\right]\right)=0$. Thus $w(\lambda)=(+1)+\frac{n+1}{2}(-1)+\frac{n-1}{2}(+1)=0$ and $\gamma_{i s}^{N N}(G) \geq 0$.

Case 2. Suppose n is even. Then $N\left[a_{0}\right]=|V(G)|$ is odd. In this case a_{0} must be labeled with +1 sign, otherwise a contradiction to λ. Therefore remaining $\frac{n}{2}$ vertices has -1 , sign and $\frac{n}{2}$ vertices has +1 . In this case $\lambda\left(N\left[a_{0}\right]\right)=1$. Thus $w(\lambda)=(+1)+\frac{n}{2}(-1)+\frac{n}{2}(+1)=1$ and so $\gamma_{i s}^{N N}(G) \geq 1$.

We define a function $\mu: G \rightarrow\{-1,+1\}$ by $f\left(a_{0}\right)=+1$ and

$$
\mu\left(a_{i}\right)= \begin{cases}+1 & \text { when } i \text { is even } \\ -1 & \text { when } i \text { is odd } .\end{cases}
$$

Suppose n is odd. From the above labeling, we get $\mu\left(N\left[a_{0}\right]\right)=0$ and $\mu\left(N\left[a_{i}\right]\right) \geq 1$ for $1 \leq i \leq n$. Thus μ is NNISDF with $w(\mu)=0$ and so $\gamma_{i s}^{N N}(G) \leq 0$.

Suppose n is even. From the above labeling, we get $\mu\left(N\left[a_{0}\right]\right)=1$ and $\mu\left(N\left[a_{i}\right]\right)=0$ for $i=1,3,5, \ldots, n-1$ and $\mu\left(N\left[a_{i}\right]\right)=2$ for $i=2,4,6, \ldots, n$. Thus μ is NNISDF with $w(\mu)=1$ and so $\gamma_{i s}^{N N}(G) \leq 1$.

Theorem 15. For $n \geq 3$ be an integer. Then the wheel graph $G=W_{n}$ admits NNISDF with
(i) $\gamma_{\text {is }}^{N N}(G)=0$ when n is odd
(ii) $\gamma_{\text {is }}^{N N}(G)=1$ when n is even.

Proof. Let $V(G)=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and $E(G)=\left\{a_{0} a_{i}: 1 \leq i \leq n\right\}$ $\bigcup\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{a_{n-1} a_{n}\right\}$. Since $\left.\mid N\left[a_{i}\right]\right] \mid$ is even for all $1 \leq i \leq n$. Let λ be a minimum NNISDF of G. By the definition of NNISDF at least one vertex has $\lambda(N[a])=0$ for $a \in V(G)$.

Case 1. Suppose n is odd. Then $N\left[a_{0}\right]=|V(G)|$ is even. Since λ be a minimum NNISDF of G. In this case $\frac{n+1}{2}$ vertices has -1 sign and $\frac{n-1}{2}$ vertices has +1 and $\lambda\left(a_{0}\right)=+1$. Thus λ is NNISDF of G with $w(\lambda)=0$ and so $\gamma_{i s}^{N N}(G) \geq 0$.

Case 2. Suppose n is even. Then $N\left[a_{0}\right]=|V(G)|$ is odd. In this case $\frac{n}{2}$ vertices has -1 sign and $\frac{n}{2}$ vertices has +1 and $\gamma_{i s}^{N N}(G) \geq 1$. Thus λ is NNISDF of G with $w(\lambda)=1$ and so $\gamma_{i s}^{N N}(G) \geq 1$.

We define a function $\mu: G \rightarrow\{-1,+1\}$ by $\mu\left(a_{0}\right)=+1$ and

$$
\mu\left(a_{i}\right)= \begin{cases}+1 & \text { when } i \text { is even } \\ -1 & \text { when } i \text { is odd } .\end{cases}
$$

Suppose n is odd. According to the above labeling, we get $\mu\left(N\left[a_{0}\right]\right)=0$ and $\mu\left(N\left[a_{i}\right]\right) \geq 1$ for $1 \leq i \leq n$. Thus g is NNISDF with $w(\mu)=0$ and so $\gamma_{i s}^{N N}(G) \leq 0$.

Suppose n is even. From the above labeling, we get $\mu\left(N\left[a_{0}\right]\right) \geq 1$ and $\mu\left(N\left[a_{i}\right]\right)=0$ for $i=1,3,5, \ldots, n-1$ and $\mu\left(N\left[a_{i}\right]\right)=2$ for $i=2,4,6, \ldots, n$. Thus μ is NNISDF with $w(\mu)=1$ and so $\gamma_{i s}^{N N}(G) \leq 1$.

Acknowledgement

The authors thank the anonymous referees for their useful comments and suggestions which improved the quality and the read-ability of the paper.

References

[1] G. J. Chang, S.-C. Liaw and H.-G. Yeh, k-Subdomination in graphs, Discrete Appl. Math. 120 (2002), 44-60.
[2] E. J. Cockayne and C. M. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin., 43 (1996), 235-245.
[3] J. E. Dunbar, S.T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs. In: Graph Theory, Combina-torics and Applications. Proc. 7th Internat. conf. Combina-torics, Graph Theory, Applications, (Y. Alavi, A. J. Schwenk, eds.), John Wiley and Sons, Inc., 1 (1995), 311-322.
[4] Duaisamy Kumar, P. Thangaraj and N. Jayalakshmi, Non-negative unique isolated Signed dominating function of graphs, Mathematics in Engineering, Science and Aerospace 13(4) (2022), 959-964.
[5] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287-293.
[6] Z. Fredi and D. Mubayi, Signed domination in regular graphs and set-systems, J. Combin. Theory Series B 76 (1999), 223-239.
[7] F. Harary, Graph Theory, Addison-Wesley, (1969).
[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater Fundamental of domination in graphs, Marcel Dekker inc. New York-Basel-Hong Kong, 1998.
[9] Z. Huang, Z. Feng and H. Xing, On nonnegative signed domination in graphs and its algorithmic complexity, J. Networks 8 (2013), 365372.
[10] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999), 295-298.
[11] I. Sahul Hamid, S. Balamurugan, Isolate domination in graphs, Arab J. Math Sci. 22 (2016), 232-241.

