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Abstract 

In this paper we consider a non-linear model to analyse the dynamics of a prey predator 

fishery resource system in an aquatic environment in which both the species are infected by the 

toxicants released by some other species subjected to bio-economic combined harvesting. Bio-

economic harvesting of prey predator fish species where each of species is affected by the 

toxicants released from other resources is discussed here by using modified catch rate function. 

The equilibria, stability, bionomic equilibrium and optimal harvesting policy by using 

Pontryagin's maximal principle have been established. We have derived that the dynamical 

behavior of the fish species will be much sensitive to the system parameters and their initial 

population densities. Some numerical simulations and the corresponding solution curves are 

cited to illustrate the theoretical results of the proposed model. Finally, the existence of limit 

cycle is shown here. 
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1. Introduction 

Bio-economic modeling is concerned with scientific management of the 

exploitation of renewable resources like fisheries, foresties, wild life 

management etc. The growing human requires of more food and more energy 

have led to increased exploitation of these resources. Besides these there are 

so many reasons of exploitation of renewable resources, as for example 

civilization, industrial purpose etc. In bio-economic modeling our objective is 

to find out the way how to manage the exploitation and extinction of 

renewable resources. Recently researchers are interested in harvesting of 

multispecies fisheries concerning this problem. Overfishing is not only the 

cause of extinction of fish population but also there are many other reasons, 

like toxicant substances, intra and inter species competition among the fish 

species etc. But as with the growing human needs industries are also 

producing a huge amount of toxicants part of which are accumulated in 

marine water, the species living in that marina environment will be highly 

affected by these toxicants. Our main objective is to study the effect of 

toxicity among fish species released by each of them and comes from other 

sources, like industries, agricultural field etc. 

The effect of toxicants on biological communities have become a major 

environmental problem in the recent decades. Mathematical modeling related 

with such ecotoxicological problems were started with the studies of Hallam 

and Clark [6], Hallam et al. [8], Hallam and De Luna [9], De luna and 

Hallam [2], Freedman and Shukla [5] and others. Some other mathematical 

studies in this field were carried out by Chattopadhyay [1], Shukla and 

Dubey [17], Mukhopadhyay et al. [13], Dubey and Hussain [4], Shukla et al. 

[16] etc. Most of these models deal with general single species or two species 

biological communities without any special significance on either terrestrial 

or aquatic environment. 

In recent times researchers are taking initiative in the ecotoxicological 

effects of toxicants released by the marine biological species themselves. The 

toxin released by one species not only affects that species but also may affect 

the growth of other species. Maynard Smith [12] investigated the effects of 

toxic substances in two species. Maynard Smith [12] proposed the effects of 

toxicants in two species Lotka-Volterra competitive model by considering the 
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fact that each species releases a substance toxic to the other only when the 

other is present. Chattopadhyay [1] analysed the stability properties of the 

above system, although the study contains the aw of ignoring an important 

delay factor in the system. In reality, a species requires some time to achieve 

a level of maturity for producing the toxicants. The model of Chattopadhyay 

[1] was revised by Mukhopadhyay et al. [13] by taking the delay factor into 

consideration. 

However, the effects of toxicants on the fish species have become 

problems of major environmental concern. Mathematical modeling in dealing 

with such problems were started with the studies of Kar and Chaudhuri [10], 

Kar, Pahari and Chaudhuri [11] etc. Most of the models deal with general 

single species or two species fishery models without any special emphasis on 

aquatic environments. 

In recent times researchers are taking initiative in the ecotoxicological 

effects of toxicants released by the marine biological species themselves. The 

toxin released by one species not only affects that species but also may affect 

the growth of other species. The idea of Maynard Smith [12] was expanded 

further by Kar and Chaudhuri [10] to a two species competing fish species 

model which are commercially exploited. Haque and Sarwardi [7] also 

developed a model to study the effect of toxicity on a harvested fishery model. 

In this paper we mainly discuss on fishery model as fish is the one of the 

most important renewable resources of the ecological system. From the 

literature discussed above and to the best of our knowledge, in this paper we 

have proposed a mathematical model to analyse the dynamics of a fishery 

resource system in an aquatic habitat subjected to harvesting of the both fish 

population where the growth of the both species is affected by some toxicants 

released by the other species. In this model we propose that both the fish 

species are harvested using modified catch rate function proposed by Sarkar, 

Sarkar and Chaudhuri [15]. The present model is organized as follows: The 

model formulation are proposed in Section 2. The equilibria and their 

feasibility are discussed in Section 3. The local and global stability analysis of 

the system are discussed in Sections 4 and 5. The bionomic equilibria and 

optimal harvesting policy of the present model are analysed. We derive the 

conditions for the existence of biological and bionomic equilibrium and study 
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their stability behaviour in Sections 6 and 7 respectively. Numerical results 

are shown in Section 8. Existence of limit cycle is discussed in Section 9 while 

a final discussion and interpretation of the current study in ecological terms 

appear in the Section 10. 

2. Formulation of the Problem 

We consider the following dynamical system as a simple prey-predator 

interaction model 

xy
k

x
rx

dt

dx
−







 −= 1  

xysy
dt

dy
+−=  (1) 

Where ( )txx =  is the biomass density of prey population at time ( )tyyt =;  

is the biomass density of predator population at time t; r is the maximum 

specific growth rate of the prey population; s is the relative rate at which the 

predators die out in absence of prey. The model assumes that the prey 

reproduction is influenced by the predators only while the predator 

reproduction is limited by the amount of prey caught. In absence of predators, 

the prey population grows with a relative rate r while in absence of prey, the 

predators die out exponentially with a relative rate s. The biomass of the prey 

consumed by the predator per unit time is given by x which is interpreted as 

the trophic function or the predator’s functional response to the prey 

population density. A fraction ( )10 



 of the energy consumed with 

this biomass goes into predator reproduction while the rest of the energy is 

used to sustain metabolism and hunting activity of predators. Here k is the 

environmental carrying capacity of prey population. In the Lotka-Voltera 

prey -predator model, the prey species grows exponentially up to infinity in 

the absence of predator species. We modify the first term of Lotka-Voltera 

prey-predator model as ,1 






 −
k

x
rx  where k=environmental carrying capacity 

of the prey species. Also here both the prey and predator are subjected to a 

combined harvesting effort E. 
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The catch rate function usually taken in the beginning of fishery models 

is of the form .qExh =  This is based on the CPUE (catch-per-unit-effort) 

hypothesis [Clark 1976]. Later on, it is revised in the functional form of 

.
lxbE

qEx
h

+
=   

Here we assume that the fisherman search randomly in a given area 

effectively which is a function of the effort level to harvest the fish resource 

by the fisherman. We rename this concept as a searching efficiency for the 

area of discovery. The capture rate of fish resource dependent on how 

effectively (efficiently) the effort level is used in presence of other fisherman. 

On the basis of the above hypothesis accordingly we modify the catch rate 

function as a function of the fish resource population being captured for 

different effort levels in the form 
Eb

qEx
h

+
=  where E denotes the harvesting 

effort, q (constant) the catch ability coefficient and b is a positive constant. 

Keeping these in view, the dynamics of prey-predator fish populations 

may be governed by the following autonomous system of differential 

equations 

Eb

Exq
xy

k

x
rx

dt

dx

+
−−







 −=
1

11  

Eb

Eyq
xysy

dt

dy

+
−+−=

2

2  (2) 

where 21, qq  represent the catch ability coefficient of the two species and 

21, bb  are suitable constants. 

The above mentioned model is now extended to the following one after 

incorporation of toxic effect. 

Eb

Exq
xxy

k

x
rx

dt

dx

+
−−−







 −=
1

13
11  

Eb

Eyq
yxysy

dt

dy

+
−−+−=

2

22
2  (3) 

Here the new parameters 21   are the coefficients of toxicity. All the 

parameters in this model Lksr ,,,,,, 21   are positive constants. The 
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term 3
1x  comes directly through the infection of the prey species by some 

external toxic substances such as industrial wastes. Here we observe that 

( )
03 2

1

3
1 =


x
dx

xd
 and 

( )
.06 1

3
1

2

=


x
dx

xd
 Therefore, there is an 

accelerated growth in the production of the toxicants to the density of the 

prey species as more and more of the species consume the infected food. Here 

1   is known as the coefficient of toxicity to the prey species. Similar is the 

case for predator species except the effect of toxicity on the predator species 

being less than on the preys is taken as .2
2y  Here 2  is the coefficient of 

toxicity to the predator species. 

3. The Steady States 

The possible steady states of the dynamical system of equation (3) are 

( ) ( )0,,0,0 110 xSS  and ( ),,  yxS  where 
1

1

1
1

2

1 2

4












+
−+







+
−

Eb

Eq
r

k

r

k

r

x  

which exists if 
Eb

E

q

r

+


11
 and ( ) yxS ,  where 

Eb

Eq
xy

k

x
x

dt

dx

+
−−−










−= 



1

12
11  

Eb

Eq
yxs

dt

dy

+
−−+−= 

2

2
2  (4) 

Now, 
( )

1

1

1

22

2

2
1

2

22

2

4











+

−
+


+




++











++











+−

= Eb

Eq

Eb

Eqs
r

k

r

k

r

x  

which is positive when 
( ) ( )Eb

q

Eb

q

+




+



1

21

2

2  and 
2

2

2



+
−−

=



 Eb

Eq
sx

y  

which is positive when 0x  and .
2

2

Eb

Eq
sx

+
+ 
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4. Local Stability 

We shall now investigate the local behaviour of the model (3) around each 

of the above mentioned steady states. The variational matrix of the system of 

equations (3) is defined as follows 

Eb

Eq
yxsy

x
Eb

Eq
xy

k

rx
r

+
−−+−

−
+

−−−−

2

2
2

1

12
1

2

3
2

 

For ( ),0,00S  the characteristic equation is 

.0

0

0

2

2

1

1

=

−
+

−−

−
+

−

Eb

Eq
s

Eb

Eq
r

 

The eigenvalue of the variational matrix are 
Eb

Eq
r

+
−

1

1  and 

.
2

2

Eb

Eq
s

+
−−  Roots of this equation 

Eb

Eq
r

+
−=

1

1
1  and .

2

2
2 Eb

Eq
s

+
−−=  

Here 01   if 
Eb

E

q

r

+


11
 and .02   So 1  and 2  are both real and 

negative when .
1

1

rq

rb
E

−
   

So, the trivial steady state ( )0,00S  is a stable node. When  ,
1

1

rq

rb
E

−
   

then 01   and 02   and ( )0,00S  is a saddle point. 

For ( ),0,11 xS  the characteristic equation is 

.0
0

2

2
1

1
2
11

=
−

+
+−−

−−−
−

Eb

Eq
xs

xx
k

rx

 

Here 02
11

1
1 








+−= x

k

rx
 and .

2

2
12 








+

+−−=
Eb

Eq
xs  Here 
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01   and hence the steady state ( ),0,11 xS  is a stable node when 

Eb

Eq
sx

++
+

2
0 2

12  The interior equilibrium ( ) yx ,  is the 

solution of the following system of equations 

01
1

12
1 =

+
−−−










− 



Eb

Eq
xy

k

x
r  

.0
2

2
2 =

+
−−+− 

Eb

Eq
yxs  (5) 

The variational matrix of the system of equations (3) around S  is  








−

−−
−

=

yy

xx
k

rx
J

2

2
12

  

So the characteristic equation of the above matrix J  is 

0
2

2

2
1 =

−−

−−−
−






yy

xx
k

rx
  

or .022 2
2

12
2

1
2 =+










++










+++ 






yxyx
k

rx
yx

k

rx
 (6) 

Here the sum of the roots 02 2
2

1 












++−=−= 



yx
k

rx
b  and the 

product of the roots .02 2
2

1 +












++== 



yxyx
k

rx
c  In absence of 

toxicity, we have 021 ==  and then = yxc  which is positive for all 

positive values of .,,,  yx   

So the roots of the quadratic equation are either real and negative or 

complex conjugates with negative real parts. Hence, the steady state S  is 

either a locally stable node or a locally stable focus. In presence of toxicity, 

.0, cb  So both the roots of the equation (6) are either real and negative or 



     MODELING OF HARVESTING OF PREY-PREDATOR FISHERY … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 9, July 2023 

2031 

complex conjugates with negative real parts. Hence the non-trivial steady 

state ( ) yxS ,  is either a locally stable node or a locally stable focus in the 

presence or absence of toxicity. 

Hence the local stability of the system is not directly dependent on the 

intensities of the toxicants provided as x  and y  are both positive which 

need to satisfy the relation 
( ) ( )

.
1

21

2

2

Eb

q

Eb

q

+




+


 So for the stability of the 

dynamical system it is necessary that the population density of the both the 

species must be positive which means that as the increasing effects of toxicity 

gradually the population density of both the species will decline which in turn 

will affect the stability of the system and finally both the species will tend to 

annihilation of the species. 

5. Global Stability 

In this section, we consider the global stability of the system of equation 

(2) by constructing a suitable Lyapunov function 

( ) ( ) ( ) ( )







−−+−−=









y

y
yyyh

x

x
xxxyxV loglog,   (7) 

where h is a suitable constant to be determined in the subsequent steps. It 

can be easily verified that the function V is zero at the equilibrium point 

( ) yx ,  and is positive for all other values of x, y. The time derivative of V 

along the trajectories of equation (3) is 

( ) ( ) 





+

−−−−−=
−

+
−

= 


Eb

Eq
xy

k

x
rxx

dt

dy

y

yy
h

dt

dx

x

xx

dt

dv

1

12
11  

( ) 






+
−−+−−+ 

Eb

Eq
yxsyyh

2

2
2  (8) 

Also, we have the set of the equilibrium equations 

01
1

12
1 =

+
−−−










− 



Eb

Eq
xy

k

x
r  
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0
2

2
2 =

+
−−+− 

Eb

Eq
yxs  (9) 

corresponding to the steady state ( ).,2
 yxS   

We can write equation (7) together with the above two equations in the 

form 

( ) ( ) ( ) 








+
+++−−

+
−−−−−= 




Eb

Eq
xy

k

x
r

Eb

Eq
xy

k

x
rxx

dt

dv

1

12
1

1

12
1 11  

( ) 






+
++−+

+
−−+−−+ 

Eb

Eq
yxs

Eb

Eq
yxsyyh

2

2
2

2

2
1

 ( ) ( ) ( ) ( ) ( ) ( )





 −+−−−+






 ++−−= 
2

2
1

2 hyyhyyxxxx
k

r
xx  

(10) 

If we choose 



=h   

( ) ( ) ( ) 02
2

1
2







 



−+







 −+−−=  yyxx
k

r
xx

dt

dv
 

Now since 
dt

dv
 is negative semi definite in some neighbourhood of 

( ),,  yx  the interior equilibrium point ( ) yx ,  is globally asymptotically 

stable. 

6. Bionomic Equilibrium 

The term bionomic equilibrium is an amalgamation of the ideas of 

biological equilibrium and economic equilibrium. As we already know, a 

biological equilibrium is given by .0 yx  ==  In the fishery literature, the 

bionomic equilibrium is said to be obtained when the total revenue earned by 

selling the harvested biomass (TR) equals the total cost for the effort 

employed to harvesting (TC). In such a case, the economic rent is completely 

dissipated. Let C be the constant fishing cost per unit effort, ,1p  constant 

price per unit biomass of the prey species, ,2p  constant price per unit 

biomass of the predator species. 



     MODELING OF HARVESTING OF PREY-PREDATOR FISHERY … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 9, July 2023 

2033 

The economic rent (net revenue) at any time is given by 

( ) EC
Eb

yqp

Eb

xqp
tEyx 








−

+
+

+
=

2

22

1

11,,,  (11) 

Although the harvesting cost per unit effort is not a constant, we take it 

to be a constant, for the sake of simplicity. Now, 

Eb

Eq
xy

k

x
rx

+
−−−







 −=
1

12
11 10  (12) 

From the equation (12), we get 

1
2

1

11
2

11

1

1

qxy
k

x
r

b
k

x
rbxyb

E

−−−






 −








 −−+

=  (13) 

Thus, E is positive when .1 1
2

1
2

1 qxy
k

x
rxy ++







 −+  

Again, 

.0
2

2
21 Eb

Eq
yxsy

+
−−+−=  (14) 

From the equation (14), we get 

( )
ysqx

xysb
E

22

22

−−−

−+
=  (15) 

So, E is positive when .22 xysqx +−  

Hence the non-trivial equilibrium solution occurs at the point on the 

curve 

( )
ysqx

xysb

qxy
k

x
r

b
k

x
rbxyb

22

22

1
2

1

11
2

11

1

1

−−−

−+
=

−−−






 −








 −−+

 (16) 

where kx 0   

The bionomic equilibrium of the open access fishery is found by Equation 
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(16) along with the condition 

TCTR −=  

EC
Eb

yqp

Eb

xqp








−

+
+

+
=

2

22

1

11  

.0
2

22

1

11 =







−

+
+

+
 C

Eb

yqp

Eb

xqp
 (17) 

7. Optimal Harvesting Policy 

The fundamental problem for finding out an optimal policy in a economic 

(commercial fishery) is to determine the optimal tradeoff between the current 

and future harvests. The present value  of a continuous time-stream of 

revenues is given by  

( )
 −=
0

,,, dtetEyx t  (18) 

where ( ) CE
Eb

yEqp

Eb

xEqp
tEyx −

+
+

+
=

2

22

1

11,,,  and  denotes the 

instantaneous annual rate of discount, C is the cost of fishing per unit effort, 

21, pp  are the price per unit biomass of x and y species respectively. Our 

problem is to maximize  subject to the state equation (3) by invoking 

Pontryagin’s Maximum Principle [14]. The control variable ( )tE  is subjected 

to the constraints so that  max,0 EVt =  is the control set where maxE  is a 

feasible upper limit for the harvesting effort. 

The Hamiltonian for the problem is given by 







+

−−−






 −+







−

+
+

+
= −

Eb

Exq
xxy

k

x
rxEeC

Eb

yqp

Eb

xqp
H t

1

13
11

2

22

1

11 1  







+

−−+−+
Eb

Eyq
yxysy

2

22
22  

(19) 

where ( ) ( )tt 21 ,   are the adjoint variables. The adjoint equations are 
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x

H

dt

d




=

1  

( )





+








+

−=−−+
+

−= − y
Eb

Eq
xy

k

rx
rEe

Eb

qp t
2

1

12
11

1

11 3
2

(20) 

and 

y

H

dt

d




=

2  

( ) 













+

−−+−+−+
+

−= −

Eb

Eq
yxsxEe

Eb

qp t

2

2
221

2

22 2  (21) 

Our aim is to find an optimal equilibrium solution of the problem so that 

we may take  

( )
.

1

1

22

22

1
2

1

11
2

11

ysqx

xysb

qxy
k

x
r

b
k

x
rbxyb

E
−−−

−+
=

−−−






 −








 −−+

=  (22) 

By using equation (22), equations (20) and (21) become respectively, 

( ) 





+

−−+






 +=
 − tEe

Eb

qp
yx

k

rx

dt

d

1

11
2

2
11

1 2  (23) 

and 

( ) ( ) 





+

−−+=
 − tEe

Eb

qp
yx

dt

d

2

22
221

2  (24) 

Eliminating 2   from the equations (23) and (24), we have 

dt

d
yx

k

rx

dt

d 1
2

2
12

1
2

2









 ++−


  

teMxyyx
k

rx −=





 +






 ++ 112
2

12   (25) 

where 
dt

d
D =   and 

Eb

yEqp

Eb

yEqp

Eb

Eqp
M

+


+

+


+

+


=

1

211

2

22

1

11
1  

The auxiliary equation for (25) is 
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022 2
2

12
2

1
2 =






 +






 ++






 ++− xyyx
k

rx
yx

k

rx
 (26) 

This is a quadratic equation in  where sum of the roots 

02 2
2

1 






 ++= yx
k

rx
 and product of the roots 

.02 2
2

1 





 +






 + xyyx
k

rx
  

Therefore the roots 1m  and 2m  of the above equation are either both real 

and positive or complex conjugates with positive parts. The complete solution 

for equation (26) is of the form 

( ) ( ) ( ) ttt e
N

M
eAeAt −









++= 1

211
21  (27) 

where .022 2
2

12
2

1
2 




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 +




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
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that 1  is bounded if .021 == AA  Then we have 

( ) constant1
1 =





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M
t  (28) 

Similarly, we get 
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
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
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Hence the shadow prices ( ) 2,1, =  iet t
i  remain constant over time in 

optimal equilibrium when they satisfy the transversality condition at , i.e., 

when they remain bounded as .→t  Again the condition that the 

Hamiltonian H must be a maximum gives the condition 
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The right hand side represents the discounted value of the future profit 

per unit effort at the steady state effort level. 

Putting the values of ( )t1  and ( )t2  in equation (31), we get 

( ) ( )
C

Eb

xbq

N

M
p

Eb

xbq

N

M
p =

+








−+

+








−

2
2

222
22

1

111
1  (31) 

Equation (31) together with equation (22) gives the optimal equilibrium 

populations 

 == yyxx ,  

When ,→  equation (32) leads to the result 
( ) ( )

C
Eb

ybqp

Eb

xbqp
=

+
+

+
2

2

222
2

1

111  

which implies ( ) 0,, =



 Eyx

E
  

Thus the economic rent is completely dissipated and hence the fishery 

remains unexploited. When the discount rate is infinite, using Equation (32) 

we get 

( ) ( )
C

Eb

ybqp

Eb

xbqp

E
−

+
+

+
=


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2
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222
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1
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( ) ( )22
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2

1

111
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N
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xbq

N

M

+
+

+
=  (32) 

Since 1M  and 2M  is of ( )o  where N is of ( ),2o  we see that 
E


 is of 

( ).1−o  Thus 
E


 is a decreasing function of ( ).0   

We, therefore, conclude that 0=  leads to maximization of .
E


 

8. Numerical Results 

Numerical simulations have been carried out by making use of MATLAB-

2016a and Maple-18. It is very difficult to validate the model results with 

realistic data so far toxic effect and harvesting are considered in the natural 
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field. These results are all verified by means of numerical illustrations of 

which some chosen ones are shown in the figures. So we take a set of 

hypothetical parameter values to illustrate the results, we have established 

in the present model: ,3.0,11,6.1,02.0,1000,15 11 ====== bEqkr  

.2.0,01.1,000008.0,005.0,6.0,00005.0 2221 ====== bqs   

Example 1. We take the parameter values as ,1000,15 == kr  

,005.0,6.0,000005.0,3.0,11,6.1,02.0 111 ======= sbEq   

.2.0,01.1,000008.0 222 === bq  in appropriate units. 

For the above values, we find that 

(i) ( )0,00S  is unstable. 

(ii) ( )0,27.7221S  is unstable. 

(iii) ( )26.408,15.3201S   is both locally and globally asymtotically stable 

node. 

 

Figure 1. Phase plane trajectories of the prey–predator  

fishery with different initial values. 

 

Figure 2. Phase plane trajectories of the prey –predator  

fishery with different initial values. 

From Figure 1 and Figure 2 it is clear that for the above set of parameter 

values, the system possesses an interior equilibrium point 

( ).26.408,15.3201S  It is also observed that the system (2) is globally 

asymptotically stable around the coexistence equilibrium .S   
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Figure 3. Solution curves of the prey-predator  

fishery for a period 0=t  to 50 weeks. 

 

Figure 4. Solution curves of the prey-predator  

fishery for a period 0=t  to 80 weeks. 

From Figure 3 and Figure 4, it is clear that the biomass density of prey 

species increases sharply with respect to time and then decreases and settles 

down at its equilibrium level. The biomass density of predator species 

increases with respect to time and then decreases slightly and settles down at 

its equilibrium level. 

Example 2. Taking the same values of the parameters together with 

50,6,5 21 === Cpp  and 

1
2

1

11
2

11

1

1

qxy
k

x
r

b
k

x
rbxyb

E

−−−






 −








 −−+

=  from Figure 5 

we find that the bionomic equilibrium exists ( ) ( ).59.1044,51.201, = yx   

 

Figure 5. Bionomic equilibrium. 
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In absence of toxicity )( ,021 ==   we found 

( ) ( ).42.1078,21.198, = yx   If we take 1.0=  together with the same 

parameter values, we find that the optimal equilibrium 

( ) ( ).14.539,82.196, = yx  

In absence of toxicity )( ,021 ==  we found 

( ) ( ).06.236,26.1435, = yx   

From numerical example we may draw the following notes: 

(i) The optimal equilibrium level for the prey species 82.196=x  is lower 

than that of the corresponding steady state level .15.320=x  But the 

optimal equilibrium population level for the predator fish species 

14.539=y  is much higher than that of the corresponding steady state level 

.26.408=y  In absence of toxicity, the optimal equilibrium level 

( ) ( )06.236,26.1435, = yx  exists at a higher population level for the prey 

species and lower population level at the predator species compared to 

( ) ( )14.539,82.196, = yx   in presence of toxicity. 

(ii) Bionomic equilibrium exists in absence of toxicity at a higher 

population level ( ) ( )42.1078,21.318, = yx  compared to 

( ) ( )59.1044,51.201, = yx  in presence of toxicity) for the first population 

but at slightly lower population for the second species. 

(iii) The bionomic equilibrium and optimal equilibrium both are critically 

depended upon the parameter values of the parameters 

.,,,,,,,,, 212121 kbbsrqqCpp   

(iv) As the effects of toxicity increase gradually the population density of 

both the species will decline and finally will tend to extinction. 

9. Existence of Limit Cycle 

We use Bendixon-Du Lac test to determine the existence of limit cycle. 

Consider the dynamical system of equations 

( )yxF
Eb

Exq
xxy

k

x
rx

dt

dx
,1

1

13
1 =

+
−−−







 −=  
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( )yxG
Eb

Eyq
yxysy

dt

dy
,

2

22
2 =

+
−−+−=  (33) 

where the functions ( )yxF ,  and ( )yxG ,  are smooth in a given simply 

connected region D in the 1sr quadrant of the ( )yx,  phase plane. Now, 

consider the function ( )
xy

yxB
1

, =  which is also smooth in the region D. 

Consider the function  

( ) ( )
xy

x

k

rx

y

BG

x

BF 212 
−


−−=




+




 (34) 

We thus observed that whatever may be the values of the parameters (as 

they are assumed to be positive) the above expression is always negative i.e. 

it keeps the same sign throughout the region D and hence there are no closed 

orbits lying entirely in the region D. 

10. Conclusions 

In this paper, we have discussed the effects of toxicants released by some 

other resources in the aquatic environment in a prey-predator fishery model 

where both the species are harvested with a modified catch rate function. We 

modify the Lotka-Volterra system by taking into consideration the 

environmental factors to restrict the growth of the prey species to a finite 

level in absence of predator. Here we use modified catch rate function for 

harvesting. The local and global stabilities are observed here. 

The existence of bionomic equilibria is examined. These are the zero 

profit line and the biological equilibrium line. The bionomic equilibrium is 

computed for a set of values of the parameters. Finally, the optimal 

harvesting policy is discussed. The present value of revenue is maximised by 

using Pontryagin’s maximum principle [14] subject to the state equations and 

the control constraints. The various cases of optimal equilibrium are shown 

here. It is found that the shadow prices remain constraint over time in 

optimal equilibrium when they satisfy the transversality condition. It is also 

shown that the zero discounting leads to the maximization of economic 

revenue and that an infinite discount rate lead to complete dissipation of 

economic rent. Optimal steady state solution is found out for a set of data. 
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From numerical simulation, we have observed that gradual increasing of 

1  causes decrease of prey species and increase of the predator species. 

Similarly, the gradual increasing of 2  causes increasing of the prey species 

and decreasing of predator species. When both the toxicants are increasing 

then both the species are decreasing. So we can conclude that gradual 

increase of toxicants released by the other resources have detrimental effects 

on each other and finally will go into extinction simultaneously, i.e., the 

system will tend to extinction. Solution curves corresponding to the steady 

state and bionomic equilibrium are shown by using Matlab and Maple 

package. Growth curves and phase plane trajectories are discussed. Lastly, 

existence of limit cycle is discussed here. 
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