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Abstract 

In this paper, we prove some convergence results for generalized -nonexpansive 

mappings, using the Picard-S hybrid iteration process in the context of uniformly convex 

Banach space. 

1. Introduction 

Fixed point theory is a very interesting research area of nonlinear 

analysis. This theory is applied to a wide class of problems arising in different 

branches of mathematics, such as: variational inequalities, equilibrium 

problems, optimization, etc. Approximation of fixed points for nonlinear 

mappings using the different iterative methods is one of the goals of fixed-

point theory. In the last decades, many iteration processes have been 

developed in this direction. Let C be a nonempty subset of a real Banach 

space X and CCT :  be a mapping with the fixed point set  ,TF  i.e., 

   .: pTpCpTF   Now, we consider some well-known iteration 

processes. The Picard iteration process is defined by 

,1 nn Txx   (1.1) 

for all ,0n  (for example, see [14]). The Mann iteration process is defined by 
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  ,11 nnnnn Txxx    (1.2) 

for all ,0n  and  1,0n  (for example, see [9]). Also, the Ishikawa 

iteration process is defined by 

  ,11 nnnnn Tyxx   

  nnnnn Txxy  1  (1.3) 

for all ,0n  where  1,0,  nn  (for example, see [7]). The Noor iteration 

process is defined by 

  ,11 nnnnn Tyxx   

  ,1 nnnnn Tzxy   

  nnnnn Txxz  1  (1.4) 

for all ,0n  where  1,0,,  nnn  (for example, see [10]). In 2007, 

Agarwal et al. [2] defined their iteration process by 

  ,11 nnnnn TyTxx   

  nnnnn Txxy  1   (1.5) 

for all ,0n  where  1,0,  nn  (for example, see [2]). In 2014, Abbas and 

Nazir [1] defined their iteration process by 

  ,11 nnnnn TzTyx   

  ,1 nnnnn TzTxy   

  nnnnn Txxz  1  (1.6) 

for all ,0n  where  1,0,,  nnn  (for example, see [1]). 

In 2014, Gursoy and Karakaya [6] defined a new iteration method called 

Picard-S hybrid iteration as follows: 

nn Tyx 1  

  nnnnn TzTxy  1  

  ,1 nnnnn Txxz   (1.7) 
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for all ,0n  where  1,0,  nn  (for example, see [6]). They used the 

Picard-S hybrid iteration process to approximate the fixed points of 

contraction mappings. Also, they showed that the Picard-S hybrid iteration 

method converges faster than all Picard, Mann, Ishikawa, Noor, and some 

other iteration methods.  

In the last years, many researchers study the class of nonexpansive 

mappings. The mapping T is called nonexpansive if 

CyxyxTyTx  ,,  

and T is called quasi-nonexpansive if 

CxpxpTx  ,  and  .TFp   

In 2008, Suzuki [17] introduced an interesting extension of nonexpansive 

mappings as follows: 

Definition 1.1[17]. A self-mapping T on a nonempty subset C of a 

Banach space is said to satisfy condition    if for each two elements 

Cyx ,   

.
2

1
yxTyTxyxTxx   () 

Suzuki showed that every nonexpansive mapping satisfied condition (). 

Also he proved that a mapping which satisfies this condition and has a fixed 

point is quasi-nonexpansive. 

Example 1.2[17]. Let  3,0C  be a subset of . Define a mapping 

CCT :  by 

 









.3if,1

3if,0

x

x
xT  

It is easy to prove that T satisfies condition (), but T is not nonexpansive. 

Later, Phuengrattana [13] proved fixed point results for mappings which 

satisfies condition () using the Ishikawa iteration process. In 2017, Pant and 

Shukla [12] introduced the class of generalized -nonexpansive mappings as 

follows: 
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Definition 1.3[12]. A self-mapping T on a nonempty subset C of a 

Banach space is said to be generalized -nonexpansive mapping if one can 

find a real number  1,0  such that for each two elements ,, Cyx    

yxTxx 
2

1
 

  .21 yxxTyyTxTyTx   

It is obviously, when 0  a generalized -nonexpansive mapping 

reduces to a mapping which satisfying condition (). 

Example 1.4. Let  4,0C  be a closed convex subset of a Banach space 

.X  Define CCT :  by 

 









.4if,2

4if,0

x

x
xT  

Then T is a generalized -nonexpansive mapping with ,
2

1
  but T does 

not satisfy Suzuki’s condition (). Recently, fixed point theorems for 

generalized -nonexpansive mappings have been studied by many authors, 

see e.g. [3, 8, 18] and references therein. 

Motived and inspired by the above, we prove some strong and weak 

convergence results using the Picard-S hybrid iteration process for 

generalized -nonexpansive mappings in uniformly convex Banach spaces. 

2. Preliminaries 

Definition 2.1[4]. A Banach space X is called uniformly convex if, for any 

 ,1,0  one can find a real number   ,0  such that 

 ,12  yx  whenever 1,1  yx  and  yx  for each 

., Xyx   X is called strictly convex if, for any Xyx ,  satisfying 

1 yx  and ,yx   it follows that .2 yx  

Definition 2.2[11]. A Banach space X is said to satisfy Opial’s condition 

if, for every weakly convergent sequence  nx  to ,Xx   it follows that 
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yxxx n
n

n
n



infliminflim  

for all ,Xy   with .xy   

Definition 2.3[5]. Let C be a nonempty subset of a Banach space X and 

let  nx  be a bounded sequence in X. For ,Xx   let 

– asymptotic radius of  nx  at x by 

   ;suplim, xxxxr n
n

n 


 

– asymptotic radius of  nx  with respect to C by 

       ;:,inf, CxxxrxCr nn   

– asymptotic center of  nx  with respect to C by 

         .,,:, nnn xCrxxrCxxCA   

If space X is uniformly convex, then set   nxCA ,  is a singleton. 

Lemma 2.4[15]. Let X be a real uniformly convex Banach space            

and ,10  bta n  for all .Nn   Let  nx  and  ny  be sequences         

in X such that ,suplim rxnn   rynn suplim  and 

  rytxt nnnnn  1lim  hold for some .0r  Then 

.0lim  nnn yx  

In the following, we prove some key lemma that will be used in our 

presentation. 

Lemma 2.5. Let T be a self-mapping on a nonempty subset C of a Banach 

space. If T is generalized -nonexpansive mapping with a fixed point p, then T 

is quasi-nonexpansive. 

Proof. Let  .TFp   Since   ,021 pxTpp   we get 

  pxxTppTxTpTx  21  

  pxpTx  1  

It follows that 

    .11 pxpTx   
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Since   ,01   we obtain our result.  □ 

Lemma 2.6. Let T be a self-mapping on a nonempty subset C of a Banach 

space. If T is generalized -nonexpansive mapping, then for all :, Cyx    

(a) ;2 TxxxTTx   

(b) Either   yxTxx 21  or   yTxxTTx  221  

holds; 

(c) Either   yxTyxyTxTyTx  21  or  

  yTxyxTTyTxTyxT  2122  holds. 

Proof. (a) Since   ,21 TxxTxx   we have 

  TxxxxTxTTx  2122  

    .212 TxxxTTxTxx   

It follows that  

    .11 2 TxxxTTx   

Since   ,01   we get our result. The condition (c) follows from (b). Let 

us prove (b). We suppose the contrary, i.e.,   yxTxx 21  and 

  .21 2 yTxxTTx   Using (a), we have 

TxyyxTxx   

    xTTxTxx 22121   

    TxTxTxx  2121  

Txx   

this is a contradiction. So, we obtain the desired result.  □ 

Lemma 2.7. Let T be a self-mapping on a nonempty subset C of a Banach 

space. If T is generalized -nonexpansive mapping, then for all ,, Cyx   we 

have 
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.
1

3
yxxTxTyx 











  

Proof. By Lemma 2.6 (c), either 

  ,21 yxTyxyTxTyTx   

or  

  .2122 yTxyxTTyTxTyxT   

holds. In the first case, we get 

TyTxTxxTyx   

  yxTyxyTxTxx  21  

    yxTyxyxxTxTxx  21  

It follows that 

.
1

1
yxTxxTyx 











  

In the second case, by Lemma 2.6(a), we have 

TyxTxTTxTxxTyx  22  

  yTxyxTTyTxTxx  212 2  

   yTxTxxTTyxxTxTxx  22  

  yTx  21  

    yTxTxxTyxTxx  12  

    xTxTxxTyxTxx  12  

  .1 yx   

This implies 

      .131 yxTxxTyx   

Since   ,01   we get 
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.
1

3
yxxTxTyx 











  

This completes the proof. □ 

Lemma 2.8. Let T be a self-mapping on a nonempty subset C of a Banach 

space X satisfying Opial’s condition. If T is generalized -nonexpansive 

mapping, then the following holds: 

  .0,, zTzTxxzxCx nnnn    

Proof. By Lemma 2.7, we have 

.
1

3
zxxTxTzx nnnn 











  

It follows that 

.infliminflim zxTzx n
n

n
n




 

From Opial’s condition, we must have .zTz   □ 

3. Main Results 

In this section, we prove some strong and weak convergence theorems for 

generalized -nonexpansive mappings in uniformly convex Banach space. 

Lemma 3.1. Let T be a self-mapping on a nonempty closed convex subset 

C of a uniformly convex Banach space X. If T is a generalized -nonexpansive 

mappings with   0TF  and  nx  is the Picard-S hybrid iteration process 

defined by (1.7), then pxn
n




lim  exists for all  .TFp     

Proof. Let  .TFp   By Lemma 2.5, we have 

  pTxxpz nnnnn  1  

  pTxpx nnnn  1  

  pxpx nnnn  1  

,pxn   (3.1) 
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and 

  pTzTxpy nnnnn  1  

  pTzpTx nnnn  1  

  pzpx nnnn  1  

  pxpx nnnn  1  

,pxn   

which implies that 

pTypx nn 1  

pyn   

.pxn   

Hence, the sequence  pxn   is non-increasing and bounded, which 

implies that pxnn lim  exists for all  .TFp   □ 

In the following theorem, we give the condition for the existence of a fixed 

point of generalized -nonexpansive mappings on a closed convex subset of X. 

Theorem 3.2. Let T be a self-mapping on a nonempty closed convex 

subset C of a uniformly convex Banach space X. If T is a generalized -

nonexpansive mappings and  nx  is the Picard-S hybrid iteration process 

defined by (1.7), then   0TF  if and only if  nx  is bounded and 

.0lim  nnn Txx   

Proof. Suppose that   .0TF  From Lemma 3.1, pxnn lim  

exists for all  TFp   and  pxn   is bounded. We suppose 

rpxnn lim  for some .0r   

From (3.1), we have 

.infliminflim rpxpz n
n

n
n




 (3.2) 

By Lemma 2.5, we have 

,infliminflim rpxTzpTx n
n

n
n




 (3.3) 
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On the other hand 

pTypx nn 1  

pyn   

  pTzpTx nnnn  1  

  pzpx nnnn  1  

it follows that 

pz
pxpx

px n
n

nn
n 




 1  

Taking the inflim  on both sides, we obtain 

pzr n
n



inflim  (3.4) 

Combining (3.2) and (3.4), we get 

     pTxpxpzr nnnn
n

n
n




1limlim  

Since 10  n  for all ,1n  by Lemma 2.4, we have 

.0lim 


nn
n

Txx  

Conversely, suppose that  nx  is bounded and .0lim 


nn
n

Txx  Let 

  ., nxCAp   By Lemma 2.7, we have 

   TpxxTpr n
n

n 


suplim,  

pxTxx n
n

nn
n
















suplimsuplim
1

3
 

pxn
n




suplim  

  ., nxpr  

It follows that   ., nxCATp   Since X is uniformly convex, set 

  nxCA ,  is a singleton. Hence, we have pTp   i.e.,   .0TF   □ 
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Theorem 3.3. Let T be a self-mapping on a nonempty compact convex 

subset C of a uniformly convex Banach space X. Let T be a generalized           

-nonexpansive mappings with   ,0TF  then the Picard-S hybrid iteration 

process defined by (1.7) converges strongly to a fixed point of T. 

Proof. By Theorem 3.2, .0lim 


nn
n

Txx  Since C is compact, we can 

find a strongly convergent subsequence  
knx  of  nx  such that qx

kn   for 

some .Cq   From Lemma 2.7, we have 

qxTxxTqx
kkkk nnnn 













1

3
 

Taking , limit k  we get .qTq   By using Lemma 3.1, 

qxnn lim  exists for all  .TFq   Thus,  nx  converges strongly to a 

fixed point of T.  □ 

Theorem 3.4. Let T be a self-mapping on a nonempty closed convex 

subset C of a uniformly convex Banach space X. Let T be a generalized           

-nonexpansive mappings with   ,0TF  then the Picard-S hybrid iteration 

process defined by (1.7) converges strongly to a fixed point of T if and only if  

   ,0,inflim 


TFxd n
n

 

where        .:,inf, TFppxdTFxd    

Proof. Necessity is obvious. Conversely, suppose that 

   .0,inflim 


TFxd n
n

 From Lemma 3.1, we have pxnn lim  exists 

for all  ,TFp   so   TFxd n
n

,inflim


 exists for all  .TFp   By 

hypothesis  

   .0,lim 


TFxd n
n

 

Now we show that  nx  is a Cauchy sequence in C. Since 

   0,lim  TFxd nn  for any 0  there exists a positive integer 

  00 nn  such that  

   .,
2

, 0nnTFxd n 


  
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Therefore, there exists  TFq   such that 

.
20


 qxn  

Thus, for all ,, 0nnm   we get 

qxqxxx nmnm   

qxqx nn 
00

 

.
22







  

Hence  nx  is a Cauchy sequence. Since C is a closed subset of Banach 

space X, the sequence  nx  converges strongly to some .Cp   Also  TF  is a 

closed subset of C and    0,lim  TFxd nn  we have  .TFp   Thus, the 

sequence  nx  converges strongly to a fixed point of T. This completes the 

proof.  □ 

Senter and Dotson [16] introduced the condition () as follows: 

Definition 3.5[16]. A self-mapping T on a subset C of a Banach space X 

is said to satisfy condition (), if there exists a non-decreasing function 

    ,0,0:  with   00   and   ,0 t  for all   ,0t  such that 

   TFxdTxx ,  

for all .Cx   

Theorem 3.6. Let T be a self-mapping on a nonempty closed convex 

subset C of a uniformly convex Banach space X. Let T be a generalized           

-nonexpansive mappings with   .0TF  If T satisfies condition (), then the 

Picard-S hybrid iteration process defined by (1.7) converges strongly to a fixed 

point of T. 

Proof. From Theorem 3.2, it follows that   .0,lim  nnn Txxd  Since T 

satisfies condition (), we have 

      0,lim,lim0 


nn
n

n
n

TxxdTFxd  
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i.e., 

    .0,lim 


TFxd n
n

 

Since the function     ,0,0:  is a non-decreasing function with 

  00   and   ,0 t  for all ,0t  we get 

   .0,lim 


TFxd n
n

 

Consequently,  nx  converges strongly to a fixed point of T.  □ 

Theorem 3.7. Let T be a self-mapping on a nonempty closed convex 

subset C of a uniformly convex Banach space X satisfying the Opial condition. 

If T is generalized -nonexpansive mappings with   ,0TF  then the Picard-

S hybrid iteration process defined by (1.7) converges weakly to a fixed point of 

T. 

Proof. From Theorem 3.2,  nx  is bounded and .0lim  nnn Txx  

Since every uniformly convex Banach space X is reflexive, we can find a 

subsequence  
knx  of  nx  such that qx

kn   for some .Cq   It follows by 

Lemma 2.8 that  .TFq   We suppose that q is not weak limit of  .nx  Then, 

there exists another subsequence  
lnx  of  nx  such that qx

ln   and .qq   

Obviously,  .TFq   Now, using the Opial’s condition, we have 

qxqxqxqx n
n

n
k

n
k

n
n kk




limlimlimlim  

but 

qxqxqxqx n
n

n
l

n
l

n
n ll




limlimlimlim  

which is a contradiction. Hence,  nx  converges weakly to q.  □ 

4. Conclusion 

We have proved some fixed point convergence results for generalized -

nonexpansive mappings via Picard-S hybrid iteration in the setting of 

uniformly convex Banach space. In future research, the readers can prove 

some fixed point convergence results for generalized -nonexpansive 
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mappings in other settings. Moreover, the readers can suggest new iterative 

methods and consider convergence analysis of these methods under certain 

suitable conditions. 
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