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Abstract

In this paper, we prove some convergence results for generalized o-nonexpansive
mappings, using the Picard-S hybrid iteration process in the context of uniformly convex
Banach space.

1. Introduction

Fixed point theory is a very interesting research area of nonlinear
analysis. This theory is applied to a wide class of problems arising in different
branches of mathematics, such as: variational inequalities, equilibrium
problems, optimization, etc. Approximation of fixed points for nonlinear
mappings using the different iterative methods is one of the goals of fixed-
point theory. In the last decades, many iteration processes have been
developed in this direction. Let C be a nonempty subset of a real Banach
space X and T : C - C be a mapping with the fixed point set F(T), i.e.,

F(T)={peC:Tp = p}. Now, we consider some well-known iteration

processes. The Picard iteration process is defined by

Xn+l = Txn, (11)

for all n > 0, (for example, see [14]). The Mann iteration process is defined by
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Xpe1 = 0%, + (1 —a,)Tx,, (1.2)
for all n >0, and «, € (0,1) (for example, see [9]). Also, the Ishikawa
iteration process is defined by
Xpi1 = (L= )xy + 0 Ty,
Yo = (L= Bp)xn + BTy, (1.3)

for all n > 0, where a,, B,, € (0,1) (for example, see [7]). The Noor iteration

process is defined by

Xn+l = (1 - 0'n)xn + O‘nTyn’
Yn = (1 - Bn)xn + ﬁnTzn’
z, =0 —7y,)x, +v,Tx, (1.4)

for all n >0, where a,, B,, v, €(0,1) (for example, see [10]). In 2007,
Agarwal et al. [2] defined their iteration process by

Xn+l = (1 - O'“n)Txn + OLnfz"yn’
Yn = (1 - Bn)xn + BnTxn (1-5)

for all n > 0, where a,, B,, € (0,1) (for example, see [2]). In 2014, Abbas and

Nazir [1] defined their iteration process by
Xpa1 = (L= o )Ty + 0, T2,
Y = (1= Bp)Tx, + B T2y,
zp = (L= vp)xn + 7,10, (1.6)
for all n > 0, where a,, B,,, v, € (0, 1) (for example, see [1]).

In 2014, Gursoy and Karakaya [6] defined a new iteration method called

Picard-S hybrid iteration as follows:
Xp41 = Typ
¥y, = (1 -oa,)Tx, +a,Tz,
zn = (1= Bpley + BpTxy, (1.7)
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for all n >0, where a,, B, € (0,1) (for example, see [6]). They used the

Picard-S hybrid iteration process to approximate the fixed points of
contraction mappings. Also, they showed that the Picard-S hybrid iteration
method converges faster than all Picard, Mann, Ishikawa, Noor, and some
other iteration methods.

In the last years, many researchers study the class of nonexpansive

mappings. The mapping 7 is called nonexpansive if

[Tx -Ty| <||lx-y] Vx,yeC

and T'is called quasi-nonexpansive if

[Tx —p|<|x-p|, Vx e C and p € F(T).

In 2008, Suzuki [17] introduced an interesting extension of nonexpansive

mappings as follows:

Definition 1.1[17]. A self-mapping T on a nonempty subset C of a

Banach space is said to satisfy condition (C) if for each two elements

x,yeC
1
sla-Tx[<[x-yl|=Tx-Ty|<|lx -y ©

Suzuki showed that every nonexpansive mapping satisfied condition (C).
Also he proved that a mapping which satisfies this condition and has a fixed

point is quasi-nonexpansive.

Example 1.2[17]. Let C = [0, 3] be a subset of R. Define a mapping

T:C—C by
0, ifx=3
1, ifx=3.

T(x) - {

It is easy to prove that T satisfies condition (C), but 7'is not nonexpansive.

Later, Phuengrattana [13] proved fixed point results for mappings which

satisfies condition (C) using the Ishikawa iteration process. In 2017, Pant and

Shukla [12] introduced the class of generalized o-nonexpansive mappings as
follows:
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Definition 1.3[12]. A self-mapping 7 on a nonempty subset C of a
Banach space is said to be generalized a-nonexpansive mapping if one can
find a real number o € [0, 1) such that for each two elements x, y € C,

1
slhx-Txe|<|x-y]

=S|I -Ty|<a|Tx -yl+a|Ty—x|+Q-20)]x -]

It is obviously, when o =0 a generalized a-nonexpansive mapping

reduces to a mapping which satisfying condition (C).

Example 1.4. Let C = [0, 4] be a closed convex subset of a Banach space
X =R. Define T : C —» C by

0, ifx=4
T()=1" "
2, ifx =4.
Then T is a generalized a-nonexpansive mapping with o > %, but T does

not satisfy Suzuki’s condition (C). Recently, fixed point theorems for
generalized a-nonexpansive mappings have been studied by many authors,

see e.g. [3, 8, 18] and references therein.

Motived and inspired by the above, we prove some strong and weak
convergence results using the Picard-S hybrid iteration process for

generalized a-nonexpansive mappings in uniformly convex Banach spaces.
2. Preliminaries

Definition 2.1[4]. A Banach space X is called uniformly convex if, for any

€€[0,1), one can find a real number & e (0,») such that
[x+y[/2<@-38), whenever |x| <1 |y|<1 and |x—-y|=¢ for each
x,ye X. X 1s called strictly convex if, for any x, y € X satisfying
[x]|=]y]l=1and x # y, it follows that | x + y || < 2.

Definition 2.2[11]. A Banach space X is said to satisfy Opial’s condition
if, for every weakly convergent sequence {x,} to x € X, it follows that
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liminf | x,, —x || < iminf | x,, — y ||
n—o0 n—o
for all y € X, with y # x.

Definition 2.3[5]. Let C be a nonempty subset of a Banach space X and
let {x,,} be a bounded sequence in X. For x € X, let

— asymptotic radius of {x,} atx by

r(x, {x,}) = limsup| x, — x |;
n—»o0

— asymptotic radius of {x,,} with respect to C by
r(C, {x,}) = inf {r(x, {x,}) : x € C};
— asymptotic center of {x,,} with respect to C by
A(C, {xy}) = {x € C i r(x, {x,}) = r(C, {x,})}-
If space X is uniformly convex, then set A(C, {x,}) is a singleton.

Lemma 2.4[15]. Let X be a real uniformly convex Banach space
and 0<a<t,<b<1, for all ne N. Let {x,} and {y,} be sequences

in X such that limsup,_ .| x,||<r, limsup, .|y, |<r and
lim, || QA —t,)x, + &, | =7 hold  for  some r=0. Then
lim,, o[ xp = ¥p || = O.

In the following, we prove some key lemma that will be used in our

presentation.

Lemma 2.5. Let T be a self-mapping on a nonempty subset C of a Banach
space. If T is generalized a-nonexpansive mapping with a fixed point p, then T
s quasi-nonexpansive.

Proof. Let p € F(T). Since (1/2)|p-Tp|=0<|x - p|, we get
| Tx = Tp| <o Tx - p|+a|Tp - x|+ 1 -2a)]x-p]|

=a|Tx -p|+Q-a)|x-p]
It follows that
Q-a)|Tx-p<Q-a)|x-p]
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Since (1 — o) > 0, we obtain our result. m

Lemma 2.6. Let T be a self-mapping on a nonempty subset C of a Banach
space. If T is generalized a-nonexpansive mapping, then for all x, y € C :

) | Tx - T% | < ||x - Tx ||

(b) Either (1/2)|x-Tx|<|x-y| or 1/2)]Tx -T% | <|Tx -y
holds;

() Either |Tx-Ty|<a|Tx-y|+a]|x-Ty||+Q-20)]|x—-y]| or
I T2 - Ty | < af| T =Ty |+ o | T%x — y |+ (1 - 20)| Tx — y || holds.

Proof. (a) Since (1/2)||x - Tx | < ||x — Tx |, we have

| T — T%x |

IN

of T% —x |+ (1 - 20) | x — Tx |

IN

af|x—Tx |+ Tx - T?x )+ @-2a)|x—Tx|.
It follows that
(1-o)] Tx —T? || < (1—a)]x - Tx|.

Since (1 — a) > 0, we get our result. The condition (c) follows from (b). Let

us prove (b). We suppose the contrary, i.e., (1/2)|x—-Tx|>|x—-y]| and

1/2)| Tx - T?x | >||Tx — y |- Using (a), we have
le=Tx|<x-yl+ly-Tx]
<@/ x - Tx |+ (1/2)] Tx - T2 |
< @/2)]x T |+ (1/2)] T - Tx |
=[x -Tx|
this is a contradiction. So, we obtain the desired result. u]

Lemma 2.7. Let T be a self-mapping on a nonempty subset C of a Banach

space. If T is generalized o-nonexpansive mapping, then for all x, y € C, we

have
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3+a
1-a

o =Tyl s (322)) T -] 4 - )

Proof. By Lemma 2.6 (c), either
[T - Ty | <o Tx - y||+afx =Ty |+ (@ -2a)]x -y,
or
| T2 - Ty | < af| T = Ty || + af| T?x — y || + (1 - 2a)|| Tx — ¥ |.

holds. In the first case, we get
lx =Ty <llo—Tx|+|Tx -Ty|

<fx-Tx|+a|Te -yl +allx -Ty|+ 0 -20)]x -y

... 2287

<Sle=Txl+oa(| Tx —x |+ ]x -y +oallx-Ty[+1-2a)]x -y

It follows that

1+a
e =Tyl ($22) 1w - Tel |-y

In the second case, by Lemma 2.6(a), we have

| =Tyl <l =Tx |+ T = T | + | T - Ty |

S2||x—Tx||+oc||Tx—Ty||+a||T2x—y||+(1—2a)||Tx—y||

S2||x—Tx||+oc(||Tx—x||+||x—Ty||)+oc(||sz—Tx [+ 7% - y])

+(1-20) Tx - y |

S@+ao)|x-Tx|+oallx-Ty|+a|x-Tx|+Q-a)|Tx -

v

S@+a)|x-Tx||+o|x-Ty|+a|x-Tx|+Q-a)|Tx —x|

+@-a)|x -y
This implies

+a)|x =Ty <@ +a)|x—Te|+0-a)x-y]

Since (1 - a) > 0, we get
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3+ a
1-a

e =Tyl s (3E2)I T -]+ - )

This completes the proof. i

Lemma 2.8. Let T be a self-mapping on a nonempty subset C of a Banach
space X satisfying Opial's condition. If T is generalized o-nonexpansive
mapping, then the following holds:

.} = Cxpz, |2, ~Tx, | > 0= Tz =z
Proof. By Lemma 2.7, we have

3+ a
1-a

it =Tz = (322 )) Ty -y 4 2, - 2 )

It follows that

lim inf|| x,, - Tz || < liminf| x, — z ||
n—o n

From Opial’s condition, we must have Tz = z. ]
3. Main Results

In this section, we prove some strong and weak convergence theorems for

generalized a-nonexpansive mappings in uniformly convex Banach space.

Lemma 3.1. Let T be a self-mapping on a nonempty closed convex subset
C of a uniformly convex Banach space X. If T is a generalized a-nonexpansive
mappings with F(T)# 0 and {x,} is the Picard-S hybrid iteration process

defined by (1.7), then lim|| x,, — p || exists for all p € F(T).
n—oo

Proof. Let p € F(T). By Lemma 2.5, we have
2o =Pl =1 @ =By +BuTxy — p |
<@=Bu)llxn = p |+ Bul Ty — P ||
S@=Bu)l % = p |+ Bnll %, - P

- pl, @)
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and
" Yn— P " = ” (1 - OLn)Txn + anZn - D "

<@=a,)| T, —p |+ 0yl Tz, - p |
SU-oy)|xy —pl+anz, - p|

SU-oy)| %y —pl+an]x, —p|

=[x, - Pl
which implies that
I %1 = oIl =Ty, —p|
<o -pl
<z -pl

Hence, the sequence {|x, — p |} is non-increasing and bounded, which

implies that lim,, , | x, — p || exists for all p € F(T). u]

In the following theorem, we give the condition for the existence of a fixed

point of generalized a-nonexpansive mappings on a closed convex subset of X.

Theorem 3.2. Let T be a self-mapping on a nonempty closed convex
subset C of a uniformly convex Banach space X. If T is a generalized a-

nonexpansive mappings and {x,} is the Picard-S hybrid iteration process
defined by (1.7), then F(T)= 0 if and only if {x,} is bounded and

lim,, | x, = T, | = 0.

Proof. Suppose that F(T)# 0. From Lemma 3.1, lim, | x, —p|
exists for all pe F(T) and {|x,-p|} is bounded. We suppose

lim, ,,| x, — p| =r for some r > 0.

From (3.1), we have

liminf| z, — p || < liminf| x, - p | = 7. (3.2)
n—»0 n—o©

By Lemma 2.5, we have

lim inf|| Tx,, — Tzp | < liminf| x, - p | = r, (3.3)
n—o n—o
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On the other hand
| %pir =2 =0Ty -l
<ly.-pl
<@-ap)| Txp = p ||+ 0| Tz, - p |

<SU-oy)|xy =Pl +an]z, - p|
it follows that

x, —pll-|x,.1 —p
"xn_p"S" n ”(x,l/ll n+l ||+||Zn_p||
Taking the lim inf on both sides, we obtain
r<liminf|z, - p| (3.4)

n—o

Combining (3.2) and (3.4), we get

r < lim " Zn — P " = lim " (1 - Bn)(xn _p)+ Bn(Txn _p) ”
n—oo n—0

Since 0 < B, <1 forall n 21, by Lemma 2.4, we have

lim || x,, — Tx, || = 0.
n—o0
Conversely, suppose that {x,} is bounded and lim | x, — Tx, | = 0. Let
n—o0

p € A(C, {x,}). By Lemma 2.7, we have

r(Tp, {x,}) = lim sup| x, — Tp |

n—o

< (3ir§)]im sup| x, — T, | + limsup| x,, - p |

1 n—ow n—owo

= limsup| x, — p ||
n—>o00

= 1(p, {xn}).
It follows that 7Tp e A(C, {x,}). Since X is uniformly convex, set

A(C, {x,}) is a singleton. Hence, we have Tp = p i.e., F(T) = 0. O
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Theorem 3.3. Let T be a self-mapping on a nonempty compact convex
subset C of a uniformly convex Banach space X. Let T be a generalized

a-nonexpansive mappings with F(T) # 0, then the Picard-S hybrid iteration
process defined by (1.7) converges strongly to a fixed point of T.

Proof. By Theorem 3.2, lim | x,, — Tx,, | = 0. Since C is compact, we can
n—oo
find a strongly convergent subsequence {x,, } of {x,} such that x, — g for

some g € C. From Lemma 2.7, we have

3+a
1-a

I, = Ta 1= (322 )] 2y, = Tt |41 20, —a ]

Taking limitk — o, we get 7q =q. By using Lemma 3.1,
lim, . | x, — q | exists for all ¢ € F(T). Thus, {x,} converges strongly to a

fixed point of 7. o

Theorem 3.4. Let T be a self-mapping on a nonempty closed convex
subset C of a uniformly convex Banach space X. Let T be a generalized

a-nonexpansive mappings with F(T) = 0, then the Picard-S hybrid iteration
process defined by (1.7) converges strongly to a fixed point of T if and only if

lim inf d(x,,, F(T)) = 0,
where d(x, F(T)) = inf {d(x, p): p € F(T)}.

Proof. Necessity s obvious. Conversely, suppose that

lim inf d(x,, F(T)) = 0. From Lemma 3.1, we have lim,_,, | x, — p| exists
n—>©
for all pe F(T), so liminfd(x,, F(T)) exists for all pe F(T). By
n—
hypothesis

lim d(x,, F(T)) = 0.
n—ow

Now we show that {x,} is a Cauchy sequence in C. Since
lim,,_,, d(x,, F(T))=0 for any & >0 there exists a positive integer

ng = ng(e) such that

d(x,, F(T)) < % Vn > ng.
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Therefore, there exists ¢ € F(T') such that
g —a ] < .
Thus, for all m, n > ng, we get
lm = xn [ <l %m —q | +] %, —q]|
<l xng —al+1xp -

< £
2

+ = &.

Do| o™

Hence {x,} is a Cauchy sequence. Since C is a closed subset of Banach
space X, the sequence {x,} converges strongly to some p € C. Also F(T) is a
closed subset of C and lim,,_,, d(x,, F(T)) = 0 we have p € F(T). Thus, the
sequence {x,} converges strongly to a fixed point of 7. This completes the

proof. o

Senter and Dotson [16] introduced the condition (Z) as follows:

Definition 3.5[16]. A self-mapping T on a subset C of a Banach space X

is said to satisfy condition (Z), if there exists a non-decreasing function
¢ : [0, ©) = [0, o0) with ¢(0) = 0 and ¢(¢) > 0, for all ¢ € (0, ©) such that

| x—Tx| > o(d(x, F(T))
for all x € C.

Theorem 3.6. Let T be a self-mapping on a nonempty closed convex
subset C of a uniformly convex Banach space X. Let T be a generalized

a-nonexpansive mappings with F(T) = 0. If T satisfies condition (I), then the

Picard-S hybrid iteration process defined by (1.7) converges strongly to a fixed
point of T.

Proof. From Theorem 3.2, it follows that lim,,_,, d(x,, T, ) = 0. Since T

satisfies condition (Z), we have

0 < lim o(d(x,, F(T))) < lim d(x,, Tx,) =0
n— n—o
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le.,
lim o(d(x,, F(T)) = 0.

Since the function ¢ : [0, ©) — [0, ) is a non-decreasing function with

¢(0) = 0 and ¢(¢) > 0, for all ¢ > 0, we get

lim d(x,, F(T)) = 0.
n—>oo

Consequently, {x,} converges strongly to a fixed point of 7. 0

Theorem 3.7. Let T be a self-mapping on a nonempty closed convex
subset C of a uniformly convex Banach space X satisfying the Opial condition.
If T is generalized a-nonexpansive mappings with F(T) # 0, then the Picard-

S hybrid iteration process defined by (1.7) converges weakly to a fixed point of
T.
Proof. From Theorem 3.2, {x,} is bounded and lim,_,, | x,, - Tx, | = 0.

Since every uniformly convex Banach space X is reflexive, we can find a

subsequence {x,, } of {x,} such that x, —~q for some g € C. It follows by

Lemma 2.8 that ¢ € F(T'). We suppose that ¢ is not weak limit of {x,}. Then,

there exists another subsequence {xnl} of {x,} such that Xp,~q and g # ¢

Obviously, g € F(T). Now, using the Opial’s condition, we have

lim | x, —¢ | = lim |2, —q|< lim |x, -¢'[= lim |x, -¢"|
n—o k—o© k—o© n—ow
but
lim || x, —¢"[ = lim || 2, —¢" [ < lim | x,, — ¢ | = lim || x,, ¢ |
n—o >0 l—o n—>c
which is a contradiction. Hence, {x,} converges weakly to q. i

4. Conclusion

We have proved some fixed point convergence results for generalized a-
nonexpansive mappings via Picard-S hybrid iteration in the setting of
uniformly convex Banach space. In future research, the readers can prove

some fixed point convergence results for generalized o-nonexpansive
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mappings in other settings. Moreover, the readers can suggest new iterative
methods and consider convergence analysis of these methods under certain

suitable conditions.
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