MULTIPLY DIVISOR CORDIAL LABELING OF SPECIAL GRAPHS

J. T. GONDALIA

Department of Mathematics
The Rajkumar College
Rajkot-360001, Gujarat, India
E-mail: jatingondalia98@gmail.com

Abstract

Multiply divisor cordial labeling of a graph G^{*} having set of node V^{*} is a bijective h from $V\left(G^{*}\right)$ to $\left\{1,2, \ldots,\left|V\left(G^{*}\right)\right|\right\}$ such that an edge $x y$ is assigned the label 1 if 2 divides $(h(x) \cdot h(y))$ and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph having multiply divisor cordial labeling is said to be a multiply divisor cordial graph.

1. Introduction

Graph theory is concerned with the use of edges to connect nodes. In computer science, the theory is quite useful. One of the unique concepts of graph labeling is demonstrated in this article using Multiply Divisor Cordial Labeling. All graphs included here are without loops and parallel edges, having no orientation, finite and connected. We follow the basic notations and terminologies of graph theory as in [8]. A graph labeling is a mapping that carries the graph components to the set of numbers, usually to the set of natural numbers. If the domain is the set of nodes the labeling is called node labeling. If the domain is the set of edges, then we speak about edge labeling. If the labels are assigned to both nodes and edges then the labeling is called total labeling. For a dynamic survey of various graph labeling, we refer to [6].

[^0]The concept of multiply divisor cordial labeling was introduced by J. T. Gondalia and A. H. Rokad. J. T. Gondalia and A. H. Rokad et al. [1], [2] proved that cycle, cycle with one chord, cycle with twin chord, cycle with triangle, path graph, star graph, jelly fish and coconut tree are multiply divisor cordial graph. Further they proved that ring sum of star with cycle, ring sum of star with cycle having one chord, ring sum of star with cycle having twin chords, ring sum of star with cycle having triangle, ring sum of star with double fan, ring sum of star with double wheel and ring sum of star with helm graph are multiply divisor cordial labeling.

2. Preliminaries

Definition 2.1. The Petersen graph is 3-regular undirected graph with 10 vertices and 15 edges.

Definition 2.2. The fan graph is denoted by F_{n} and described as $F_{n}=P_{n}+K_{1}$, where P_{n} indicates the path graph with n vertices.

Definition 2.3. The helm H_{n} is the graph obtained from a wheel graph W_{n} by attaching a pendant vertex through an edge to each rim vertex of W_{n}.

Definition 2.4. The flower $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex of the helm to the apex vertex. Here the pendant vertices of helm H_{n} are referred as external vertices of $F l_{n}$.

3. Main Results

Theorem 1. The graph G obtained by joining two copies of Petersen graph by a path of arbitrary length is multiply divisor cordial.

Proof. Let G be the graph obtained by joining two copies of Petersen graph by a path P_{k} of length $k-1$. Let $u_{1}, u_{2}, \ldots, u_{5}$ and $u_{6}, u_{7}, \ldots, u_{10}$ be external and internal vertices of first copy of Petersen graph respectively. Here each u_{i} is adjacent to $u_{i+5}, i=1,2,3,4,5$. Similarly let $w_{1}, w_{2}, \ldots, w_{5}$ and $w_{6}, w_{7}, \ldots, w_{10}$ be external and internal vertices of second copy of Petersen graph respectively. Here each w_{i} is adjacent to $w_{i+5}, i=1,2,3,4,5$. Let $v_{1}, v_{2}, \ldots, v_{k}$ be successive vertices of path P_{k} with $v_{1}=u_{1}$ and $v_{k}=w_{1}$.

We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, k+18\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =4 i-3 ; 1 \leq i \leq 5 \\
& =4(i-5)-1 ; 6 \leq i \leq 10, \\
f\left(v_{j}\right) & =2 j+17 ; 2 \leq j \leq\left\lceil\frac{k}{2}\right\rceil, \\
& =2 j-\left\lceil\frac{k}{2}\right\rceil+20 ;\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \leq j \leq k-1, \\
f\left(w_{i}\right) & =4 i-2 ; 1 \leq i \leq 5, \\
& =4(i-5) ; 6 \leq i \leq 10 .
\end{aligned}
$$

The labeling defined above satisfies the conditions of multiply divisor cordial labeling and hence the graph under consideration is a multiply divisor cordial graph.

Illustration 1. A multiply divisor cordial labeling of the graph obtained by joining two copies of the Petersen graph by a path P_{7} is shown in Figure 1.

Figure 1. Petersen graph P_{7}.
Theorem 2. The graph G obtained by joining two copies of cycle with one chord by a path of arbitrary length is multiply divisor cordial.

Proof. Let G be the graph obtained by joining two copies of cycle C_{n} with one chord by path P_{k}. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of first copy of cycle with one chord, $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of second copy of cycle with one
chord and $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of path P_{k} with $w_{1}=u_{1}$ and $w_{k}=v_{1}$. Let $e=u_{1} u_{3}$ be the chord in first copy of cycle C_{n} and $e^{\prime}=v_{1} v_{3}$ be the chord in second copy of cycle C_{n}. To define labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ we consider following cases.

Case 1. $n=4, k$ is odd. Let $k=2 t+1, t \in N$.

$$
\begin{aligned}
f\left(u_{1}\right) & =3, f\left(u_{2}\right)=1, f\left(u_{3}\right)=5, f\left(u_{4}\right)=7 \\
f\left(w_{1}\right) & =f\left(u_{1}\right)=3 \\
f\left(w_{i}\right) & =2 n+2 i-3 ; 2 \leq i \leq t+1 \\
& =2[i-(t+1)] ; t+2 \leq i \leq 2 t+1 \\
f\left(v_{i}\right) & =2 t+2(i-1) ; 1 \leq i \leq n
\end{aligned}
$$

Case 2. $n=4, k$ is even.
Let $k=2 t, t \in N$.

$$
\begin{aligned}
f\left(u_{1}\right) & =3, f\left(u_{2}\right)=1, f\left(u_{3}\right)=5, f\left(u_{4}\right)=7 \\
f\left(w_{1}\right) & =f\left(u_{1}\right)=3 \\
f\left(w_{i}\right) & =2 n+2 i-3 ; 2 \leq i \leq t \\
& =2(i-t) ; t+1 \leq i \leq 2 t \\
f\left(v_{i}\right) & =2 t+2(i-1) ; 1 \leq i \leq n
\end{aligned}
$$

Case 3. $n \geq 5, k$ is odd.
Let $k=2 t+1, t \in N$.

$$
\begin{aligned}
f\left(u_{1}\right) & =1, f\left(u_{2}\right)=3, f\left(u_{3}\right)=9 \\
f\left(u_{i}\right) & =2 i-3 ; \text { if } 4 \leq i \leq 5 \\
& =2 i-1 ; \text { if } 6 \leq i \leq n \\
f\left(w_{1}\right) & =f\left(u_{1}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
f\left(w_{i}\right) & =2 n+2 i-3 ; \text { if } 2 \leq i \leq t+1 . \\
& =2\{i-(t+1)\} ; \text { if } t+2 \leq i \leq 2 t+1 . \\
f\left(v_{i}\right) & =2 t+2(i-1) ; \text { if } 1 \leq i \leq n .
\end{aligned}
$$

Case 4. $n \geq 5, k$ is even.
Let $k=2 t, t \in N$.

$$
\begin{aligned}
f\left(u_{1}\right) & =1, f\left(u_{2}\right)=3, f\left(u_{3}\right)=9 \\
f\left(u_{i}\right) & =2 i-3 ; \text { if } 4 \leq i \leq 5 \\
& =2 i-1 ; \text { if } 6 \leq i \leq n . \\
f\left(w_{1}\right) & =f\left(u_{1}\right)=1 ; \\
f\left(w_{i}\right) & =2 n+2 i-3 ; \text { if } 2 \leq i \leq t . \\
& =2\{i-t\} ; \text { if } t+1 \leq i \leq 2 t . \\
f\left(v_{i}\right) & =2 t+2(i-1) ; \text { if } 1 \leq i \leq n .
\end{aligned}
$$

One can observe that in each case the labeling defined above satisfies the conditions of multiply divisor cordial labeling and the graph under consideration is multiply divisor cordial graph.

Illustration 2. For better understanding of above defined labeling pattern the multiply divisor cordial labeling of graph obtained by joining two copies of C_{6} with one chord by path P_{5} is shown in Figure 2.

Figure 2. Join of two copies of C_{6} with one chord by path P_{5}.
Theorem 3. The graph G obtained by joining two copies of cycle with twin chords by a path of arbitrary length is multiply divisor cordial.

Proof. Let G be the graph obtained by joining two copies of cycle C_{n} with twin chords by path P_{k}. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of first copy of cycle with twin chords, $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of second copy of cycle with twin chords and $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of path P_{k} with $v_{1}=u_{1}$ and $w_{k}=v_{1}$. Let $e_{1}=u_{1} u_{3}$ and $e_{2}=u_{1} u_{4}$ be the chords in first copy of cycle C_{n} and $e_{1}^{\prime}=v_{1} v_{3}$ and $e_{1}^{\prime}=v_{1} v_{4}$ be the chords in second copy of cycle C_{n}.

We define labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.
Case 1. k is odd. Let $k=2 t+1, t \in N$.

$$
\begin{aligned}
f\left(u_{1}\right) & =1, f\left(u_{2}\right)=3, f\left(u_{3}\right)=9 \\
f\left(u_{i}\right) & =2 i-3 ; \text { if } 4 \leq i \leq 5 \\
& =2 i-1 ; \text { if } 6 \leq i \leq n \\
f\left(w_{1}\right) & =f\left(u_{1}\right)=1 ; \\
f\left(w_{i}\right) & =2 n+2 i-3 ; \text { if } 2 \leq i \leq t+1 \\
& =2\{i-(t+1)\} ; \text { if } t+2 \leq i \leq 2 t+1 \\
f\left(v_{i}\right) & =2 t+2(i-1) ; \text { if } 1 \leq i \leq n
\end{aligned}
$$

Case 2. k is even.
Let $k=2 t, t \in N$.

$$
\begin{aligned}
& f\left(u_{1}\right)=1, f\left(u_{2}\right)=3, f\left(u_{3}\right)=9 \\
& \begin{aligned}
f\left(u_{i}\right) & =2 i-3 ; \text { if } 4 \leq i \leq 5 \\
& =2 i-1 ; \text { if } 6 \leq i \leq n \\
f\left(w_{1}\right) & =f\left(u_{1}\right)=1 ; \\
f\left(w_{i}\right) & =2 n+2 i-3 ; \text { if } 2 \leq i \leq t \\
& =2(i-t) ; \text { if } t+1 \leq i \leq 2 t \\
f\left(v_{i}\right) & =2 t+2(i-1) ; \text { if } 1 \leq i \leq n
\end{aligned}
\end{aligned}
$$

One can observe that in each case the labeling defined above satisfies the conditions of multiply divisor cordial labeling and the graph under consideration is multiply divisor cordial graph.

Illustration 3. For well understanding of above defined labeling pattern the multiply divisor cordial labeling of graph obtained by joining two copies of C_{6} with twin chords by path P_{6} is shown in Figure 3.

Figure 3. Join of two copies of C_{6} with twin chords by path P_{6}.
Theorem 4. The graph G obtained by joining two copies of cycle C_{n} with triangle by a path of arbitrary length is multiply divisor cordial.

Proof. Let G be the graph obtained by joining two copies of cycle C_{n} with triangle by path P_{k} of length $k-1$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of first copy of cycle with triangle. Let $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of second copy of cycle with triangle. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of path P_{k} with $u_{1}=v_{1}$ and $v_{k}=w_{1}$. Let $e_{1}=u_{1} u_{3}, e_{2}=u_{3} u_{5}, e_{3}=u_{5} u_{1}$ be the chords in first copy of cycle C_{n} and $e_{1}^{\prime}=w_{1} w_{3}, e_{2}^{\prime}=w_{3} w_{5}$ and $e_{3}^{\prime}=w_{5} w_{1}$ be the chord in second copy of cycle C_{n}.

We define labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.
Case 1. k is even.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(v_{1}\right)=1, \\
& f\left(w_{1}\right)=f\left(v_{k}\right)=k, \\
& f\left(u_{2}\right)=3, f\left(u_{3}\right)=9, f\left(u_{4}\right)=5, f\left(u_{5}\right)=7, \\
& f\left(u_{i}\right)=2 i-1 ; 6 \leq i \leq n,
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{j}\right) & =2 n+2 j-3 ; 2 \leq i \leq \frac{k}{2} \\
& =2 j-k ; \frac{k}{2}+1 \leq i \leq k \\
f\left(w_{i}\right) & =k+2(i-1) ; 1 \leq i \leq n
\end{aligned}
$$

Case 2. k is odd.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(v_{1}\right)=1 \\
& f\left(w_{1}\right)=f\left(v_{k}\right)=k-1 \\
& f\left(u_{2}\right)=3, f\left(u_{3}\right)=9, f\left(u_{4}\right)=5, f\left(u_{5}\right)=7, \\
& f\left(u_{i}\right)=2 i-1 ; 6 \leq i \leq n \\
& f\left(v_{j}\right)=2 n+2 j-3 ; 2 \leq i \leq \frac{k+1}{2} \\
& \\
& =
\end{aligned} \begin{aligned}
f\left(w_{i}\right) & =k+2 i-3 ; 1 \leq i \leq n
\end{aligned}
$$

One can observe that in each case the labeling defined above satisfies the conditions of multiply divisor cordial labeling and the graph under consideration is a multiply divisor cordial graph.

Illustration 4. The multiply divisor cordial labeling of the graph obtained by joining two copies of C_{7} with triangle by a path P_{4} is shown in Figure 4. It is the case related to k is even.

Figure 4. Join of two copies of C_{7} with triangle by path P_{4}.

Theorem 5. The graph G obtained by joining two copies of fan graph F_{n} by a path of arbitrary length is multiply divisor cordial.

Proof. Let G be the graph obtained by joining two copies of fan graph F_{n} by a path P_{k} of length $k-1$. Let us denote the successive vertices of first copy of fan graph by $u_{1}, u_{2}, \ldots, u_{n+1}$ and the successive vertices of second copy of fan graph by $w_{1}, w_{2}, \ldots, w_{n+1}$. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of path P_{k} with $v_{1}=u_{1}$ and $v_{k}=w_{1}$. Here we consider the case for $n \geq 3$. We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.

Case 1. k is even.
In this case define f as:

$$
\begin{aligned}
f\left(u_{1}\right) & =f\left(v_{1}\right)=2, f\left(w_{1}\right)=f\left(v_{k}\right)=1, \\
f\left(u_{2}\right) & =4, f\left(v_{\frac{k}{2}}^{2}\right)=6, \\
f\left(u_{i}\right) & =k+2(i-1) ; 3 \leq i \leq n, \\
f\left(v_{j}\right) & =6+2(j-1) ; 2 \leq j \leq \frac{k}{2}-1 \\
& =2 j-k+1 ; \frac{k}{2}+1 \leq j \leq k-1, \\
f\left(w_{i}\right) & =k+2 i-3 ; 1 \leq i \leq n .
\end{aligned}
$$

Case 2. k is odd.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(v_{1}\right)=2, f\left(w_{1}\right)=f\left(v_{k}\right)=1, \\
& f\left(u_{2}\right)=4, f\left(v_{\frac{k-1}{}}^{2}\right)=6, \\
& f\left(u_{i}\right)=k+2 i-3 ; 3 \leq i \leq n, \\
& f\left(v_{j}\right)=6+2(j-1) ; 2 \leq j \leq \frac{k-3}{2}
\end{aligned}
$$

$$
=2(j+1)-k ; \frac{k+1}{2} \leq j \leq k-1,
$$

$f\left(w_{i}\right)=k+2(i-1) ; 1 \leq i \leq n$.
In each case f satisfies the conditions of multiply divisor cordial labeling and hence the graph under consideration is a multiply divisor cordial graph.

Illustration 5. Multiply divisor cordial labeling of the graph obtained by joining two copies of F_{8} by a path P_{5} is shown in Figure 5.

Figure 5. Join of two copies of F_{8} by path P_{5}.
Theorem 6. The graph G obtained by joining two copies of flower graph $F l_{n}$ by a path of arbitrary length is multiply divisor cordial.

Proof. Let G be the graph obtained by joining two copies of flower graph $F l_{n}$ by a path P_{k} of length $k-1$. Let u_{0} be the apex vertex, $u_{1}, u_{2}, \ldots, u_{n}$ be the rim vertices and $u_{1}^{J}, u_{2}^{J}, \ldots, u_{n}^{J}$ be the external vertices of first copy of flower $F l_{n}$. Let w_{0} be the apex vertex, $w_{1}, w_{2}, \ldots, w_{n}$ be the rim vertices and $w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}, \ldots, w_{n}^{\prime}$ be the external vertices of second copy of flower $F l_{n}$. Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of path P_{k} with $v_{1}=u_{1}$ and $v_{k}=w_{1}$.

We define a labeling function $f: V(G) \rightarrow\{1,2, \ldots, 2 n+k-2\}$ as follows.
Case 1. $k=2$.
In this case define f as:

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(v_{1}\right)=4, \\
& f\left(w_{1}\right)=f\left(v_{2}\right)=3,
\end{aligned}
$$

MULTIPLY DIVISOR CORDIAL LABELING OF SPECIAL GRAPHS

$$
\begin{aligned}
f\left(u_{0}\right) & =2, f\left(w_{0}\right)=1, \\
f\left(w_{1}^{\prime}\right) & =7, \\
f\left(u_{i}\right) & =2(i+1) ; 1 \leq i \leq n, \\
f\left(u_{i}^{\prime}\right) & =2(n+i+1) ; 1 \leq i \leq n, \\
f\left(w_{i}\right) & =8 i-1 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+9 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n, \\
f\left(w_{i}^{\prime}\right) & =8 i-5,2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+5 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n .
\end{aligned}
$$

Case 2. $k=3$.
In this case define f as:

$$
\begin{aligned}
f\left(u_{1}\right) & =f\left(v_{1}\right)=4, \\
f\left(v_{2}\right) & =4 n+3, \\
f\left(w_{1}\right) & =f\left(v_{3}\right)=3, \\
f\left(u_{0}\right) & =2, f\left(w_{0}\right)=1, \\
f\left(w_{1}^{\prime}\right) & =7, \\
f\left(u_{i}\right) & =2(i+1) ; 1 \leq i \leq n, \\
f\left(u_{i}^{\prime}\right) & =2(n+i+1) ; 1 \leq i \leq n, \\
f\left(w_{i}\right) & =8 i-1 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+9 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n,
\end{aligned}
$$

$$
\begin{aligned}
f\left(w_{i}^{\prime}\right) & =8 i-5,2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+5 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n
\end{aligned}
$$

Case 3. $k \geq 3$.
In this case define f as:

$$
\begin{aligned}
f\left(u_{0}\right) & =2, f\left(w_{0}\right)=1 \\
f\left(w_{1}\right) & =f\left(v_{k}\right)=3 \\
f\left(w_{1}^{\prime}\right) & =7 \\
f\left(v_{\left\lceil\frac{k}{2}\right.}^{2}\right) & \\
f\left(u_{i}\right) & =2(i+2) ; 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right) & =2(n+i+2) ; 1 \leq i \leq n \\
f\left(w_{i}\right) & =8 i-1 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+9 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n \\
f\left(w_{i}^{\prime}\right) & =8 i-5,2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& =8(n-i)+5 ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n \\
& \\
& =4 n+2\left(j-\left\lfloor\frac{k}{2}\right]\right)+1 ;\left\lceil\frac{k}{2}\right\rceil \leq j \leq k \\
f\left(v_{j}\right) & =4 n+2(j+1) ; 2 \leq j \leq\left\lfloor\frac{k}{2}\right\rfloor-1, \\
& =4
\end{aligned}
$$

One can observe that in each case the labeling defined above satisfies the conditions of multiply divisor cordial labeling and the graph under consideration is a multiply divisor cordial graph.

Illustration 6. The multiply divisor cordial labeling of the graph obtained by joining two copies of $F l_{6}$ by path P_{7} is shown in Figure 6.

Figure 6. Join of two copies of $F l_{6}$ by path P_{7}.

5. Conclusions

Multiply divisor cordial labelling is variant of divisor cordial labelling. Because all graphs do not allow multiply divisor cordial labelling, it is particularly fascinating to explore graphs or graph families that are multiply divisor cordial. This will give the study work in the area of graph labelling, number theory, and network algorithms in computer engineering a new level. Here, I looked through six novel graph families those allow multiple divisor cordial labelling.

Acknowledgement

The author wishes to convey his heartfelt gratitude to the editor and anonymous reviewers for their time and insightful comments.

References

[1] J. T. Gondalia and A. H. Rokad, Multiply divisor cordial labeling, International Journal of Engineering and Advanced Technology 9(2) (2019), 1901-1904.
[2] J. T. Gondalia and A. H. Rokad, Multiply divisor cordial labeling in context of ringsum of graphs, Advances in Mathematics: Scientific Journal 9(11) (2020), 9037-9044.
[3] G. V. Ghodasara, A. H. Rokad and I. I. Jadav, Cordial labeling of grid related graphs, International Journal of Combinatorial Graph Theory and Applications 6(2) (2013), 5562.
[4] G. V. Ghodasara and A. H. Rokad, Cordial Labeling of $K_{n, n}$ related graphs, International Journal of Science and Research 6(2) (2013), 55-62.
[5] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201-207.
[6] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics 19 (2012), \#DS6, 1-260.
[7] A. H. Rokad and G. V. Ghodasara, Fibonacci cordial labeling of some special graphs, Annals of Pure and Applied Mathematics 11(1) (2016), 133-144.
[8] F. Harary, Graph theory, Addision-Wesley, Reading, MA, 1969.

[^0]: 2020 Mathematics Subject Classification: 05C78.
 Keywords: multiply divisor cordial labeling, multiply divisor cordial graph, joint sum of graphs. Received June 29, 2323; Accepted July 12, 2023

