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Abstract 

In this paper we will present a new estimate for the  ndF ,  matrix method. So we studied 

“on approximation of function in the Hölder metric by ( )  ndFC ,1,  means of Fourier series” has 

been determined by Rathore Shrivastava and Mishra [15] and again in 2022, Rathore, 

Shrivastava and Mishra [17] determined a theorem on “approximation of function in the Hölder 

metric by ( ) ( )qEC ,2,  product summability of Fourier series”. Further we generalize a theorem 

“on approximation of continuous function in the Hölder metric by ( )  ndFC ,2,  means of its 

Fourier series”. 

1. Introduction 

Chandra [1] was first to extend the result of Prossdorf’s [12]. In 1983, 

Mohapatra and Chandra [11] found the degree of approximation in the 

Hölder metric using matrix transform. In this direction we studied on 

approximation of f belong to many classes also Hölder metric by Cesaro, 

Norlund, Euler mean has been discussed by several researchers like 

respectively Das, Ghosh and Ray [2], Lal and Kushwaha [7], Rathore and 

Shrivastava ([13], [14]), Kushwaha [6], Rathore, Shrivastava and Mishra [16] 

etc. In 2021, Rathore, Shrivastava and Mishra [15] have been determined “on 
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approximation of function in the Hölder metric by ( ) ndFC ,1,  product 

summability of Fourier series”. Recently Rathore, Shrivastava and Mishra 

[17] determined a theorem on “approximation of function in the Hölder metric 

by ( ) ( )qEC ,2,  product summability of Fourier series”. We extend the result 

on approximation of function in the Hölder metric by ( ) ndFC ,2,  mean of 

its Fourier series, has been proved. 

2. Definition and Notation 

Let ( )xf  be periodic with period −2  and integrable in the sense of 

Lebesgue. The Fourier series of ( )xf  is given by  

( ) ( )


=

++=

1

0 sincos
2

n

nn nxbnxa
a

xf  (2.1) 

with nth partial sum ( ).; xfSn  

Let 2C  denote the Banach Spaces of all −2  periodic continuous 

function defined on  − ,  under “sup’’ norm. For 10   and some 

positive constant K, the function space H  is given by 

 ( ) ( )  −−= yxKyfxfCfH :2  (2.2) 

The space H  is a Banach space (see Prössdorf’s [12]) with the norm 


  defined by 

( ) ,,
,

yxfSupff
yx

c



+=  (2.3) 

where 

( ) .xfSupf
x

c
−

=  (2.4) 

and  

( )  ( ) ( ) ( ).,, yxyxyfxfyxf −−=
−  (2.5) 

We shall use the convention that ( ) 0,0 = yxf  the metric induced by 

norm (2.3) on the H  is called the Hölder metric. If can be seen that 
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( )


−


 ff 2  for .10   Thus ( )
 ,H  is a family of 

Banach spaces which decreases as  increase. 

Let ,,,, 21 nddd   be a fixed sequence of positive number and x be a real 

number. The element nkP  of  ndF ,  matrix are defined by the relations  

 
=



=

=
+

+
n

j k

k
nk

j

j
xP

d

dx

1 0
1

  (2.6) 

and  

.100 =P  (2.7)  

Let  

( ) ( )


=

=

0

.;,

k

knkx xfSPxf   (2.8) 

Denote the  ndF ,  mean of the Fourier series of  − ,LF   at x, where 

( )xfSk ;  is the kth partial sum of (2.1).  

The  ndF ,  method was introduced by Jakimovsky [4] as generalization 

of both the Euler rE  method and Stirling-Karamata-Lototsky method. When 

( )
,3,2,1,

1
=

−
= n

c

n
dn  and c, a positive integer, the  ndF ,  matrix 

reduces to the matrix corresponding to the Stirling-Karamata-Lototsky 

method defined by Karamata [5]. The Euler ( )10  rEr  are obtained with 

( )
.,3,2,1,

1
=

−
= n

r

r
dn  Lorch and Newman [8] studied the Lebesgue 

constant for this method. Several fundamental properties of  ndF ,  matrix 

have been discussed in Meir and Miracle [9, 10] 

( )

=

+
=

n

k k

k
n

d

d
S

1
21

2   (2.9) 

and 

( )
.

1

1
21

1


=

+
+=

n

k
k

n d
U   (2.10)  
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The  ndF ,  matrix is regular by Jakimovsky [4] if →nU  as →n   

we shall consider only regular matrices and indeed assume that nd  is 

bounded away from zero for large n. 

The 
( )21 n

n

d

d

+
 is bounded away from zero and →nS  as →n  

 nUn =+1  be the integral part of .nU  

The series 


=0k ku  is said to be ( )2,C  summable to S is defined as (see 

Hardy [3])  

( )( )
( ) ( )

( )
=

→+−
++

=

n

k

k
C

n SSkn
nn

xft

0

2, 1
21

2
:  as →n   (2.11)  

Let  ( )2,C
nt  denote the sequence of ( )2,C  mean of  nS  if  

( )  ( )
( ) ( )

( ) ( )
=

→+−
++

=

n

k

qaF
k

dFC
n Stkn

nn
xft n

0

,,2,
1

21

2
:  as →n  (2.12) 

where 
( ) ndFC
nt

,2,
 denote the sequence of ( )  ndFC ,2,  product mean of the 

sequence ,nS  the series 


=0k ku  is said to be summable to the number S by 

( )  ndFC ,2,  method. 

“The degree of approximation ( )fEn  be given by  

( ) ,min pnn fTfE −=   (2.13)  

where ( )xTn  is a trigonometric polynomial of degree n” by (Zygmund [19]).  

We shall use following notation:  

( ) ( ) ( ) ( )xftxftxft 2−−++=  (2.14) 

and ( ) ( ) ( ).ttt yx −=   (2.15) 
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3. Some Theorems 

Chandra [1] obtained the following result: 

Theorem 3.1. “Let 10   and let . Hf  Then 

( )  .lognnOffEq
n

−

=−  (3.1) 

where ( )xfEq
n ,  denotes ( )qE,  transform of ( )xfSn ; ”. 

Rathore, Shrivastava and Mishra [17] obtained the following result. 

“On approximation of continuous function in the Hölder metric by 

product summability ( ) ( )qEC ,2,  mean of its Fourier series” has been 

established.  

Theorem 3.2. “If 10   and  Hf  then 

( ) ( ) ( ).1log12 ++=−
−


nnOxfEC q

nn  (3.2) 

Where q
nnEC2  is the product summability ( ) ( )qEC ,2,  mean of ( )xfSn ; ”. 

4. Main Theorem 

We prove the following theorem 

“On approximation of function in the Hölder metric by mean 

( )  ndFC ,2,  of its Fourier series” has been established. 

Theorem. “If 10   and  Hf  then 

( )   ( ) ( ) ( ).1log1
,2,

++=−
−


nnOxft ndFC

n   (4.1)  

where 
( ) ndFC
nt

,2,
 is the product summability mean ( )  ndFC ,2,  of  

( )xfSn ; ”. 

5. Lemmas 

We shall use the following lemmas: 
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Lemma 5.1. Let ( )tx  be defined in (2.15) then for , Hf  we have  

( ) ( ) 
−− yxktt yx 4  

( ) ( ) .4 
− tktt yx  (5.1) 

It is easy to verify. 

Lemma 5.2. 

( )
( )  ( ).421exp

1

exp 32

1
tSOtSitU

d

dit
nn

n

k
n

k

k +−−=
+

+
 =

 (5.2)  

This is due to Lorch and Newman [8]. 

Lemma 5.3. Let ( )
( )

( ) ( ) 2sin

4
exp

2
sin

21

12

2

0

t

tStU

nn

kn
tK

nnn

k
n













 −









++
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=
 =

  

then ( ) ( ),1+= nOtKn  for 
( )

.
1

0
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n
t  

Proof. Apply tnnt sinsin   for 
1

0
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n
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2sin

4
exp

21

12 2
0

t

tUtS

nn

kn

tK nn
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k
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 −

++
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02
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( )
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2

1

2

2 +
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nn

n
 

( ).1+= nO   (5.3) 

Lemma 5.4. Let ( )
( )

( ) ( ) 2sin

4
exp

2
sin

21

12

2

0

t

tStU

nn

kn
tK

nnn

k
n













 −









++

+−
=
 =

  

then ( ) ,
1







=
t

OtKn  for 
( )

.
1


+


t

n
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Proof. Using 










tt

2
sin  and 1

2
sin 

tUn  for 
+


t

n 1
 

( )
( )

( ) ( ) 











 −

++

+−

=
 =

t

tS

nn

kn

tK n

n

k
n

1

4
exp

21

12 2
0
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−
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n

k
k

n 02

2
 

( )
( )

t

nn

tn 2

1

2

2 +
−

+
=  

.
1







=
t

O  (5.4) 

Lemma 5.5. Let ( )
( )

( ) ( )
( )

2sin21

12 3
0

t

tSO

nn

kn
tK n

n

k
n ++

+−
=
 =

  

then ( ),1+= nO  for .
1

0
+




n
t  

Proof. Using 



tt

2
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1
0

+




n
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then ( )
( )

( ) ( )
( )

221

12 3
0

t

tSO

nn

kn
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n

k
n ++

+−

=
 =

 

( )
( ) ( )
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+−

++
=

n

k

n tkn
nn

SO

0

212
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2

02

2
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( )
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2

12

1

2
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 +
−

+
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nn

tn
 

( ).1+= nO   (5.5)  

Lemma 5.6. Let ( )
( )

( ) ( )
( )

2sin21

12 3
0

t

tSO

nn

kn
tK n

n

k
n ++

+−
=
 =

  

then ( ),1+= nO  for 
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t
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Proof. Using 



tt

2
sin  for 

( )


+


t

n 1
  

then ( )
( )

( ) ( )
( )

++
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=
 =

t

t
SO

nn

kn

tK n

n

k
n

3
0

21

12
 

( )
2

02

2
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n
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−

+
=  =

 

( ).1+= nO  (5.6)  

6. Proof of the Main Theorem 

Following Titchmarsh [18], the kth partial sum ( )xfSk ;  of the Fourier 

series (2.1) is given by 

( ) ( ) ( )
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0

.
2

1
sin
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11
; tdtkt

t
xfxfS xk  (6.1) 

The  ndF ,  transform 
 ndF
nt

,
 of ( )xfSk ;  is given by  

  ( )
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The ( )  ndFC ,2,  transform of ( )xfSk ;  by 
( ) ndFC
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,2,
 we have  
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( )
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Writing ( ) ( )  ( ),,2, xftxI ndFC
nn −=  we have 
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( )
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Applying Lemma 5.3 
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Now  
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1
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( ) .1 −
+= nO  (6.8) 
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.2.21.2 II +=  (6.9) 

Now  

( ) ( )
+



= 1

0
1.2

n
n dttKxI  

( ) +




+= 1
0

1 n dttnO  using Lemmas 5.1 and 5.5 

( ) .1 −
+= nO  (6.10) 

Similarly  

( ) .12.2
−

+= nOI  Using Lemma 5.6 (6.11) 

Now combining (6.10) and (6.11), we have 

( ) .12
−

+= nOI   (6.12) 

Now using ( ) ( ) ( )ttt yx −=  

( ),
−= yxO  (6.13) 

we obtain  
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( ).
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Now for ,2,1=k  and for ,10   

we observe that 

−
= kkk III 1

 (6.16) 

By using (6.12) and (6.15) respectively above identity (6.16) for 2=k  

gives  

 ( ) .12
−

+−= nyxOI   (6.17) 
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Again using (6.7), (6.8), (6.14) and identity (6.16) for ,1=k  we obtain  

 ( ) ( ).1log11 ++−=
− nnyxOI   (6.18) 

Thus from (6.17) and (6.18), we get  

( ) ( ) ( )
( ) ( )

( )



 −

−
=

yx

yIxI
yxI nn

yx

yxn

yx

yx ,, sup,sup  

( ) ( ).1log1 ++=
− nnO  (6.19) 

Now using the fact that ( ) ( ) == tOtHf x  and proceeding as above, 

we obtain  

( )   ( )xftSupI ndFC
n

x
cn −=

−

,2,
 

( ) ( ).1log1 ++=
− nnO   (6.20) 

Combining the results (6.18) and (6.19) and using (6.20), we derive 

( )   ( ) ( ) ( ).1log1
,2,

++=−
−


nnOxft ndFC

n  

Hence proof of the main theorem is completed. 

7. Application 

We can derive the following corollary.  

Corollary 7.1. If , Lipf  when .10   Then for 1n  

( )  ( ) ( ) .log,2, nnOxft ndFC
n

−
=−  

If we put 0=  then Theorem 3.2 is particular case of main Theorem. 

8. Conclusion 

We would like to mention that from our result some newer method of 

summability like ( ) ( ) ( )cedfqaF n ,,,,  and Norlund mean can be used to sum 

infinite series. Further the result of our theorem is more general rather than 
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the result of any other previous proved theorems. Also our results play an 

important role in application in pure and applied mathematics. 
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