ON CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH POLYLOGARITHM FUNCTION

T. THULASIRAM ${ }^{1}$, T. V. SUDHARSAN ${ }^{2}$ and K. SUCHITHRA ${ }^{3}$
1,3Department of Mathematics
Agurchand Manmull Jain College
Chennai-600 114, Tamil Nadu, India
E-mail: ltthulasiram@gmail.com
suchithravenkat@yahoo.co.in
${ }^{2}$ Department of Mathematics
S. I. V. E. T. College
Gowrivakkam, Chennai-600073
Tamil Nadu, India
E-mail: tvsudharsan@rediffmail.com

Abstract

In this paper, we consider a new subclass $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ of analytic functions involving an integral operator defined by polylogarithm function and obtain necessary and sufficient conditions for this class. Further, results on partial sums are investigated.

1. Introduction

Let \mathcal{A} denote the class of analytic functions f defined on the unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ with normalization $f(0)=f^{\prime}(0)-1=0$. Such a function has the Taylor series expansion about the origin in the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in U \tag{1.1}
\end{equation*}
$$

Denote by \mathcal{S}, the subclass of \mathcal{A} consisting of functions that are univalent.

Also, denote by T a subclass of \mathcal{A} consisting functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0, z \in U \tag{1.2}
\end{equation*}
$$

introduced and studied by Silverman [1].
For $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} ; z \in U \tag{1.3}
\end{equation*}
$$

Let $\Phi(a ; z)$ denote the well-known generalisation of the Riemann zeta and polylogarithm functions or simply the $\delta^{\text {th }}$ order polylogarithm function given by

$$
\begin{equation*}
\Phi_{\delta}(c ; z)=\sum_{k=1}^{\infty} \frac{z^{k}}{(k+c)^{\delta}} \tag{1.4}
\end{equation*}
$$

where any term with $k+c=0$ is excluded (see Lerch [2])
Using the definition of the Gamma function [[3], page 27], a simple transformation produces integral formula

$$
\begin{equation*}
\Phi_{\delta}(c ; z)=\frac{1}{\Gamma(\delta)} \int_{0}^{1} z\left(\log \frac{1}{t}\right)^{\delta-1} \frac{t^{c}}{1-t z} d t \tag{1.5}
\end{equation*}
$$

where $\operatorname{Re}(c)>-1$ and $\operatorname{Re}(\delta)>1$.
More details about polylogarithm function can be seen in Ponnusamy [4] and Ponnusamy and Sabapathy [5].

Further, it is noted that $\Phi_{-1}(0 ; z)=\frac{z}{(1-z)^{2}}$ is Koebe function.
Now, for $f \in \mathcal{A}$ of the form (1.1), Al-Shaqsi [6] defined the following integral operator

$$
\begin{equation*}
\mathcal{J}_{c}^{\delta} f(z)=(1+c)^{\delta} \Phi_{\delta}(c, z) * f(z)=-\frac{(1+c)^{\delta}}{\Gamma(\delta)} \int_{0}^{1} t^{c-1}\left(\log \frac{1}{t}\right)^{(\delta-1)} f(t z) d t \tag{1.6}
\end{equation*}
$$

where $c>0, \delta>1$ and $z \in U$.
Also, in [6], Al-Shaqsi noted that the operator defined by (1.6) can be expressed by series expansion as below:

$$
\begin{equation*}
\mathcal{J}_{c}^{\delta} f(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+c}{k+c}\right)^{\delta} a_{k} z^{k}=z+\sum_{k=2}^{\infty} C_{k, \delta} a_{k} z^{k} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k, \delta}=\left(\frac{1+c}{k+c}\right)^{\delta} \tag{1.8}
\end{equation*}
$$

We note that

$$
z\left(\mathcal{J}_{c}^{\delta} f(z)\right)^{\prime}=(c+1) \mathcal{J}_{c}^{\delta-1} f(z)-c \mathcal{J}_{c}^{\delta} f(z)
$$

and

$$
z^{2}\left(\mathcal{J}_{c}^{\delta} f(z)\right)^{\prime \prime}=(c+1)^{2} \mathcal{J}_{c}^{\delta-2} f(z)-(2 c+1)(c+1) \mathcal{J}_{c}^{\delta-1} f(z)+c(c+1) \mathcal{J}_{c}^{\delta} f(z)
$$

A class $U C D(\alpha), \alpha \geq 0$ consisting of functions $f \in A$ satisfying

$$
\operatorname{Re}\left[f^{\prime}(z)\right] \geq \alpha\left|f^{\prime \prime}(z)\right|, z \in U
$$

was introduced and investigated in [7].
Following the study of Rosy [8] and Sunil Verma et al. [9], we introduce a new subclass of \mathcal{A} involving Al-Shaqsi operator [6] as below:

For $\alpha \geq 0,0 \leq \beta<1, c>0, \delta>0$ let $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ be the subclass of \mathcal{A} consisting of functions of the form (1.1) that satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\mathcal{J}_{c}^{\delta} f(z)}{z}\right) \geq \alpha\left|\left(\mathcal{J}_{c}^{\delta} f(z)\right)^{\prime}-\frac{\mathcal{J}_{c}^{\delta} f(z)}{z}\right|+\beta \tag{1.9}
\end{equation*}
$$

where $\mathcal{J}_{\mu, b} f(z)$ is given by (1.7).

We further let $T \mathcal{M}_{c}^{\delta}(\lambda, \alpha)=\mathcal{M}_{c}^{\delta}(\lambda, \alpha) \cap T$ For $\mu=0 ; \beta=0$, the class $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ reduces to the class $S D(\alpha)$ studied by [9].

Motivated by the works of Sheil-Small [10], Silvia [11], Silverman [12], Owa et al. [13], Rosy et al. [14], Murugusundaramoorthy et al. [15], Soybas et al. [16], necessary and sufficient conditions are obtained for the class $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$. Further results on partial sums are investigated.

2. The Classes $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ and $T \mathcal{M}_{c}^{\delta}(\lambda, \alpha)$

In this section, we obtain a sufficient condition for a function f given by (1.1) to be in the class $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ and we prove that it is also a necessary condition for a function belonging to the class $T \mathcal{M}_{c}^{\delta}(\lambda, \alpha)$.

Theorem 2.1. A function $f(z)$ be the form (1.1) is in $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[1+\alpha(k-1)] C_{k, \delta}\left|a_{k}\right| \leq 1-\beta \tag{2.1}
\end{equation*}
$$

where $\alpha \geq 0,0 \leq \beta<1$, where $C_{k, \delta}$ is given by (1.8).
Proof. Since $\alpha \geq 0,0 \leq \beta<1$. It suffices to show that

$$
\alpha\left|\left(\mathcal{J}_{c}^{\delta} f(z)\right)^{\prime}-\frac{\left(\mathcal{J}_{c}^{\delta} f(z)\right)}{z}\right|-\operatorname{Re}\left\{\frac{\left(\mathcal{J}_{c}^{\delta} f(z)\right)}{z}-1\right\} \leq 1-\beta .
$$

We have

$$
\begin{aligned}
& \alpha\left|\left(\mathcal{J}_{c}^{\delta} f(z)\right)^{\prime}-\frac{\left(\mathcal{J}_{c}^{\delta} f(z)\right)}{z}\right|-\operatorname{Re}\left\{\frac{\left(\mathcal{J}_{c}^{\delta} f(z)\right)}{z}-1\right\} \\
& \leq \alpha\left|\left(\mathcal{J}_{c}^{\delta} f(z)\right)^{\prime}-\frac{\left(\mathcal{J}_{c}^{\delta} f(z)\right)}{z}\right|+\left|\frac{\left(\mathcal{J}_{c}^{\delta} f(z)\right)}{z}-1\right| \\
& \leq \alpha\left|\frac{\sum_{k=2}^{\infty}(k-1) C_{k, \delta} a_{k} z^{k}}{z}\right|+\left|\frac{\sum_{k=2}^{\infty} C_{k, \delta} a_{k} z^{k}}{z}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \alpha \sum_{k=2}^{\infty}(k-1) C_{k, \delta}\left|a_{k}\right|+\sum_{k=2}^{\infty} C_{k, \delta}\left|a_{k}\right| \\
& =\sum_{k=2}^{\infty}(1+\alpha(k-1)) C_{k, \delta}\left|a_{k}\right|
\end{aligned}
$$

The last expression is bounded above by $(1-\beta)$ if

$$
\sum_{k=2}^{\infty}(1+\alpha(k-1)) C_{k, \delta}\left|a_{k}\right| \leq 1-\beta
$$

and hence the proof.
Theorem 2.2. For $\alpha \geq 0,0 \leq \beta<1$, a function $f(z)$ of the form (1.2) to be in the class $\operatorname{TM}_{c}^{\delta}(\lambda, \alpha)$ if and only if

$$
\sum_{k=2}^{\infty}[1+\alpha(k-1)] C_{k, \delta}\left|a_{k}\right| \leq 1-\beta
$$

Proof. Suppose $f(z)$ of the form (1.2) is in the class $T \mathcal{M}_{c}^{\delta}(\lambda, \alpha)$. Then

$$
\operatorname{Re}\left[\frac{T \mathcal{J}_{c}^{\delta} f(z)}{z}\right]-\alpha\left|\left(T \mathcal{J}_{c}^{\delta} f(z)\right)^{\prime}-\frac{\left(T \mathcal{J}_{c}^{\delta} f(z)\right)}{z}\right| \geq \beta .
$$

Equivalently,

$$
\operatorname{Re}\left[1-\sum_{k=2}^{\infty} C_{k, \delta}\left|a_{k}\right| z^{k-1}\right]-\alpha\left|\sum_{k=2}^{\infty}(k-1) C_{k, \delta} a_{n} z^{k-1}\right| \geq \beta .
$$

Letting z to take real values and as $|z| \rightarrow 1$, we have

$$
1-\sum_{k=2}^{\infty} C_{k, \delta}\left|a_{k}\right|-\alpha \sum_{k=2}^{\infty}(k-1) C_{k, \delta}\left|a_{n}\right| \geq \beta,
$$

which implies

$$
\sum_{k=2}^{\infty}(1+\alpha(k-1)) C_{k, \delta}\left|a_{k}\right| \leq 1-\beta,
$$

where $\alpha \geq 0,0 \leq \beta<1, C_{k, \delta}$ is given by (1.8) and the sufficiency follows from Theorem 2.1.

Corollary 2.1. If $f \in \operatorname{TM}_{c}^{\delta}(\lambda, \alpha)$, then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{(1-\beta)}{(1+\alpha(k-1)) C_{k, \delta}} \tag{2.2}
\end{equation*}
$$

where $k \geq 2, \alpha \geq 0,0 \leq \beta<1, C_{k, \delta}$ is given by (1.8).

Equality holds for the function

$$
\begin{equation*}
f_{k}(z)=z-\frac{(1-\beta)}{(1+\alpha(k-1)) C_{k, \delta}} z^{k} \tag{2.3}
\end{equation*}
$$

$\alpha \geq 0,0 \leq \beta<1, C_{k, \delta}$ is given by (1.8).

3. Partial Sums of Functions in the Class $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$

For a function $f \in \mathcal{A}$ given by (1.1), Silverman [11] investigated the partial sums f_{1} and fm defined by $f_{1}(z)=z$ and $f_{m}(z)=\sum_{k=2}^{m} a_{k} z^{k}$, $m=2,3,4, \ldots$.

In this paper, we examine the ratio of the function of the form (1.7) to its sequence of partial sums $\mathcal{J}_{c}^{\delta} f_{m}(z)=z+\sum_{k=2}^{m} C_{k, \delta} a_{k} z^{k}$ when the coefficients of f are sufficiently small to satisfy the condition (2.1).

We determine sharp lower bounds for $\operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f(z)}{\mathcal{J}_{c}^{\delta} f_{m}(z)}\right], \operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f_{m}(z)}{\mathcal{J}_{c}^{\delta} f(z)}\right]$, $\operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f^{\prime}(z)}{\mathcal{J}_{c}^{\delta} f_{m}^{\prime}(z)}\right], \operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f_{m}^{\prime}(z)}{\mathcal{J}_{c}^{\delta} f^{\prime}(z)}\right]$. In the sequel we make frequent use of the well known result that $\operatorname{Re}\left[\frac{1+w(z)}{1-w(z)}\right]>0, Z \in U$ if and only if $w(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$ satisfy the inequality $|w(z)| \leq|z|$.

Theorem 3.1. Let $f(z)$ of the form (1.1) belong to the class $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ and
satisfy (2.1). Then

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f(z)}{\mathcal{J}_{c}^{\delta} f_{m}(z)}\right] \geq 1-\frac{1}{d_{m+1}}, z \in U, m \in N \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f_{m}(z)}{\mathcal{J}_{c}^{\delta} f(z)}\right] \geq \frac{d_{m+1}}{1+d_{m+1}}, z \in U, m \in N \tag{3.2}
\end{equation*}
$$

where $d_{k}=\frac{(1+\alpha(k-1))}{1-\beta}$
The estimates in (3.1) and (3.2) are sharp for every m with extremal function $f(z)=z+\frac{1}{d_{m+1}} z^{m+1}$.

Proof. Clearly $d_{k+1}>d_{k}>1, k=2,3,4, \ldots$
Therefore, we have

$$
\sum_{k=2}^{m} C_{k, \delta}\left|a_{k}\right|+d_{m+1} \sum_{k=2}^{m} C_{k, \delta}\left|a_{k}\right| \leq \sum_{k=2}^{m} d_{k} C_{k, \delta}\left|a_{k}\right| \leqq 1
$$

Consider

$$
\begin{aligned}
g(z) & =d_{m+1}\left[\frac{\mathcal{J}_{c}^{\delta} f(z)}{\mathcal{J}_{c}^{\delta} f_{m}(z)}-\left(1-\frac{1}{d_{m+1}}\right)\right] \\
& =\frac{1+\sum_{k=2}^{m} C_{k, \delta} a_{k} z^{k-1}+d_{m+1} \sum_{k=2}^{m} C_{k, \delta} a_{k} z^{k-1}}{1+\sum_{k=2}^{m} C_{k, \delta} a_{k} z^{k-1}}=\frac{1+A(z)}{1+B(z)}
\end{aligned}
$$

Set $\frac{1+A(z)}{1+B(z)}=\frac{1+w(z)}{1-w(z)}$, so that

$$
w(z)=\frac{A(z)-B(z)}{2+A(z)+B(z)}
$$

$$
=\frac{d_{m+1} \sum_{k=m+1}^{\infty} C_{k, \delta} a_{k} z^{k-1}}{2+2 \sum_{k=2}^{m} C_{k, \delta} a_{k} z^{k-1}+d_{m+1} \sum_{k=m+1}^{\infty} C_{k, \delta} a_{k} z^{k-1}}
$$

and $w(0)=0$.

Now, $|w(z)| \leq \frac{d_{m+1} \sum_{k=m+1}^{\infty} C_{k, \delta}\left|a_{k}\right|}{2-2 \sum_{k=2}^{m} C_{k, \delta}\left|a_{k}\right|-d_{m+1} \sum_{k=m+1}^{\infty} C_{k, \delta}\left|a_{k}\right|}$
if

$$
\begin{equation*}
\sum_{k=2}^{m} C_{k, \delta}\left|a_{k}\right|+d_{m+1} \sum_{k=m+1}^{m} C_{k, \delta}\left|a_{k}\right| \leq 1 \tag{3.3}
\end{equation*}
$$

The LHS of (3.3) is bounded above by $\sum_{k=2}^{\infty} \frac{(1+\alpha(k-1))}{(1-\beta)} C_{k, \delta}\left|a_{k}\right| \geq 0$.

$$
\sum_{k=2}^{m}\left(d_{k}-1\right) C_{k, \delta}\left|a_{k}\right|+\sum_{k=m+1}^{m}\left(d_{k}-d_{m+1}\right) C_{k, \delta}\left|a_{k}\right| \geq 0
$$

The above inequality holds because d_{k} is a non-decreasing sequence.
To see that the function $f(z)=z+\frac{1}{d_{m+1}} z^{m+1}$ gives the sharp result, we observe that for $z=r e^{\frac{i \pi}{m}}$,

$$
\frac{\mathcal{J}_{c}^{\delta} f(z)}{\mathcal{J}_{c}^{\delta} f_{m}(z)}=1+\frac{z^{m}}{d_{m+1}} \rightarrow 1-\frac{1}{d_{m+1}} \text { when } r \rightarrow 1^{-}
$$

and this completes the proof of (3.1). Similarly, if we set

$$
h(z)=\left(1+d_{m+1}\right)\left[\frac{\mathcal{J}_{c}^{\delta} f_{m}(z)}{\mathcal{J}_{c}^{\delta} f(z)}-\left(\frac{d_{M+1}}{1+d_{m+1}}\right)\right]
$$

the proof of (3.2) is similar to that of (3.1), and hence is omitted.
Theorem 3.2. Let $f(z)$ of the form (1.1) belong to the class $\mathcal{M}_{c}^{\delta}(\lambda, \alpha)$ and
satisfy (2.1). Then

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f^{\prime}(z)}{\mathcal{J}_{c}^{\delta} f_{m}^{\prime}(z)}\right] \geq 1-\frac{m+1}{d_{m+1}}, z \in U, m \in N \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\mathcal{J}_{c}^{\delta} f_{m}^{\prime}(z)}{\mathcal{J}_{c}^{\delta} f^{\prime}(z)}\right] \geq \frac{d_{m+1}}{m+1+d_{m+1}}, z \in U, m \in N \tag{3.5}
\end{equation*}
$$

where $d_{k}=\frac{(1+\alpha(k-1))}{1-\beta}$
The estimates in (3.4) and (3.5) are sharp for every m with extremal function $f(z)=z+\frac{1}{d_{m+1}} z^{m+1}$.

Proof. Clearly $d_{k+1}>d_{k}>1, k=2,3,4, \ldots$
Therefore, we have

$$
\sum_{k=2}^{m} C_{k, \delta}\left|a_{k}\right|+d_{m+1} \sum_{k=2}^{m} C_{k, \delta}\left|a_{k}\right| \leq \sum_{k=2}^{m} d_{k} C_{k, \delta}\left|a_{k}\right| \leqq 1
$$

By setting,

$$
g(z)=\frac{d_{m+1}}{m+1}\left[\frac{\mathcal{J}_{c}^{\delta} f^{\prime}(z)}{\mathcal{J}_{c}^{\delta} f_{m}^{\prime}(z)}-\left(1-\frac{m+1}{d_{m+1}}\right)\right] ; z \in U
$$

and

$$
h(z)=\left(m+1+d_{m+1}\right)\left[\frac{\mathcal{J}_{c}^{\delta} f_{m}^{\prime}(z)}{\mathcal{J}_{c}^{\delta} f^{\prime}(z)}-\left(\frac{d_{m+1}}{m+1+d_{m+1}}\right)\right] ; z \in U
$$

the proof is similar to that of Theorem 3.1 and hence we omit the details.

References

[1] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[2] M. Lerch, Note sur la fonction $k(w, x, s)=\sum_{k=0}^{\infty} e^{2 k \pi x}$, Acta Math. 11 (1887), 19-24.

2108

[3] M. Bateman, Higher Transcendental Functions; McGraw-Hill, New York, NY, USA 1 (1953).
[4] S. Ponnusamy, Inclusion theorems for convolution product of second order polylogarithms and functions with the derivative in a halfplane, Rocky Mt. J. Math. 28 (1998), 695-733.
[5] S. Poonusamy and S. Sabapathy, Polylogarithms in the theory of univalent functions, Results Math. 30 (1996), 136-150.
[6] K. Al-Shaqsi, Strong differential subordinations obtained with new integral operator defined by polylogarithm function, Int. J. Math. Math. Sci. 260198 (2014), 1-6.
[7] T. Rosy, B. Adolf Stephen, K. G. Subramanian and Herb Silverman, Classes of convex functions, Internat. J. Math. and Math. Sci. 23(12) (2000), 819-825.
[8] T. Rosy, Studies on subclasses of starlike and convex functions, Ph.D. Thesis, University of Madras (2001).
[9] S. Sunil Varma and T. Rosy, Certain properties of a subclass of univalent functions with finitely many fixed coefficients, Khayyam J. Math. 3(1) (2017), 26-33.
[10] T. Shiel-Small, A note on partial sums of convex Schlicht functions, Bull. London Math. Soc. 2 (1970), 165-168.
[11] E. M. Silvia, Partial sums of convex functions of order α, Houston J. Math. 11(3) (1985), 397-304.
[12] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221-227.
[13] S. Owa, H. M. Srivastava and N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math. 81 (2004), 1239-1256.
[14] T. Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivative, J. Ineq. Pure and Appl. Math. 4(4) Art 64 (2003), 1-19.
[15] G. Murugusundaramoorthy and T. Janani, Inclusion results associated with certain subclass of analytic functions involving calculus operator, TWMS J. Pure Appl. Math. 7 (2016), 63-75.
[16] D. Soybas, S. B. Joshi and H. Pawar, On a certain subclass of analytic functions involving integral operator defined by polylogarithm function, MDPI, Mathematics 7(1) 66 (2019), 1-9.

