
 

Advances and Applications in Mathematical Sciences 
Volume 22, Issue 10, August 2023, Pages 2099-2108 
© 2023 Mili Publications, India 

 

2020 Mathematics Subject Classification: 30C45. 

Keywords:  Analytic functions, univalent functions, Hadamard product, polylogarithm function. 

Received August 16, 2021; Accepted January 1, 2022  

ON CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS 

ASSOCIATED WITH POLYLOGARITHM FUNCTION 

T. THULASIRAM1, T. V. SUDHARSAN2 and K. SUCHITHRA3 

1,3Department of Mathematics 

Agurchand Manmull Jain College 

Chennai-600 114, Tamil Nadu, India 

E-mail: ltthulasiram@gmail.com 

suchithravenkat@yahoo.co.in 

2Department of Mathematics 

S. I. V. E. T. College 

Gowrivakkam, Chennai-600073 

Tamil Nadu, India 

E-mail: tvsudharsan@rediffmail.com 

Abstract 

In this paper, we consider a new subclass   ,c  of analytic functions involving an 

integral operator defined by polylogarithm function and obtain necessary and sufficient 

conditions for this class. Further, results on partial sums are investigated.  

1. Introduction 

Let  denote the class of analytic functions f defined on the unit disk 

 1:  zzU   with normalization     .0100  ff  Such a 

function has the Taylor series expansion about the origin in the form 
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Denote by , the subclass of  consisting of functions that are univalent. 
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Also, denote by T a subclass of  consisting functions of the form 
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introduced and studied by Silverman [1]. 

For   
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nzbzzg  the Hadamard product (or convolution) of f 

and g is defined by 
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Let  za;  denote the well-known generalisation of the Riemann zeta 

and polylogarithm functions or simply the th order polylogarithm function 

given by 
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where any term with 0 ck  is excluded (see Lerch [2]) 

Using the definition of the Gamma function [[3], page 27], a simple 

transformation produces integral formula 
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where   1Re c  and   .1Re    

More details about polylogarithm function can be seen in Ponnusamy [4] 

and Ponnusamy and Sabapathy [5]. 

Further, it is noted that  
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  is Koebe function. 

Now, for f  of the form (1.1), Al-Shaqsi [6] defined the following 

integral operator 
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where 1,0 c  and .Uz    

Also, in [6], Al-Shaqsi noted that the operator defined by (1.6) can be 

expressed by series expansion as below: 
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We note that 

        zfczfczfz ccc
 

  11  

and 

                .11121 1222 zfcczfcczfczfz cccc
 

   

A class   0, UCD  consisting of functions Af   satisfying 

     Uzzfzf  ,Re  

was introduced and investigated in [7]. 

Following the study of Rosy [8] and Sunil Verma et al. [9], we introduce a 

new subclass of  involving Al-Shaqsi operator [6] as below: 

For 0,0,10,0  c  let   ,c  be the subclass of  

consisting of functions of the form (1.1) that satisfy the condition 
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where  zfb,  is given by (1.7). 
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We further let     TT cc   ,,   For ,0;0   the class 

  ,c  reduces to the class  SD  studied by [9]. 

Motivated by the works of Sheil-Small [10], Silvia [11], Silverman [12], 

Owa et al. [13], Rosy et al. [14], Murugusundaramoorthy et al. [15], Soybas et 

al. [16], necessary and sufficient conditions are obtained for the class 

 ., 
c  Further results on partial sums are investigated. 

2. The Classes   ,c  and   ,cT  

In this section, we obtain a sufficient condition for a function f given by 

(1.1) to be in the class   ,c  and we prove that it is also a necessary 

condition for a function belonging to the class  ., 
cT  

Theorem 2.1. A function  zf  be the form (1.1) is in   ,c  if 
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where ,10,0   where ,kC  is given by (1.8). 

Proof. Since .10,0   It suffices to show that 
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The last expression is bounded above by  1  if  
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and hence the proof. □ 

Theorem 2.2. For ,10,0   a function  zf  of the form (1.2) to be 

in the class   ,cT  if and only if 
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Proof. Suppose  zf  of the form (1.2) is in the class  ., 
cT  Then  
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Letting z to take real values and as ,1z  we have 
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where  ,,10,0 kC  is given by (1.8) and the sufficiency follows from 

Theorem 2.1. □ 

Corollary 2.1. If  ,,  
cTf   then  
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where  ,,10,0,2 kCk  is given by (1.8). 

Equality holds for the function 
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 ,,10,0 kC  is given by (1.8). 

3. Partial Sums of Functions in the Class   ,c  

For a function f  given by (1.1), Silverman [11] investigated the 

partial sums 1f  and fm defined by   zzf 1  and    
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In this paper, we examine the ratio of the function of the form (1.7) to its 

sequence of partial sums     
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2 ,  when the coefficients 

of f are sufficiently small to satisfy the condition (2.1). 

We determine sharp lower bounds for 
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 In the sequel we make frequent use of the well 

known result that 
 
 

UZ
zw

zw











,0

1

1
Re  if and only if   






1k

k
kzczw  

satisfy the inequality   .zzw    

Theorem 3.1. Let  zf  of the form (1.1) belong to the class   ,c  and 
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satisfy (2.1). Then 
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where 
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The estimates in (3.1) and (3.2) are sharp for every m with extremal 

function   .
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The LHS of (3.3) is bounded above by 
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The above inequality holds because kd  is a non-decreasing sequence.  

To see that the function   1
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and this completes the proof of (3.1). Similarly, if we set 
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the proof of (3.2) is similar to that of (3.1), and hence is omitted. □ 

Theorem 3.2. Let  zf  of the form (1.1) belong to the class   ,c  and 
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satisfy (2.1). Then 
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the proof is similar to that of Theorem 3.1 and hence we omit the details. □ 
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