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Abstract 

In this study, a precise and useful scheme is projected to solve the exothermic reaction 

model with a constant heat source in the porous medium. The model concentrates on the driving 

force to investigate the temperature profile. The governing equations of the problems with 

proper boundary conditions are reduced to nonlinear boundary value problems (BVPs) by 

applying similarity transformations. In the scheme, we simplify the governing BVPs using the 

Fibonacci wavelet operational matrix method. Using this scheme, the BVPs can be transformed 

into a set of algebraic equations and solved using Newton’s iterative method. To check the 

efficiency of the proposed method, second-order linear and nonlinear boundary value problems 

having exact solutions are considered test problems and compared to the Haar wavelet 

operational matrix method (HWOMM) with exact solutions. Also, the obtained solutions are in 

great agreement and are more accurate compared to the HWOMM results. 
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1. Introduction 

The exothermic reaction is a physical or chemical reaction that releases 

energy in the form of light and heat while also releasing net energy to its 

surroundings. It simply indicates that the energy required to initiate the 

reaction is less than the energy released afterward. In biological 

environments, energy is generated from chemical bonds. The energy is 

required when bonds are broken, the energy is released when bonds are 

created. There is bond energy for each sort of bond. By calculating bond 

energies, it is possible to forecast whether a chemical reaction will produce or 

consume heat. The heat is produced when more energy is expended to 

establish bonds than to break them, this reaction is called an exothermic 

reaction. A chemical reaction that necessitates the addition of energy is called 

an endothermic reaction. The capacity to break bonds is known as activation 

energy. 

In recent years, convection has been increasingly popular in a variety of 

fields, to name a few, Geothermal energy extraction, Solar energy conversion, 

Groundwater contaminant transport, Oil reservoir simulation, Atmospheric 

dynamics, Energy extraction, Nuclear reactors, and Underground coal 

gasification. The Exothermic Reaction (ER) model is centered on a system 

where the driving force is due to temperature gradients applied at the 

system’s boundary. The author Beck has investigated the critical Rayleigh 

number for a convective fluid flow in a rectangular box of saturated porous 

material [1-2]. Some researchers have discussed Rayleigh-Bernard-type 

convection [3-4]. They also studied how the ER model causes convective 

instabilities in a porous medium. S. Subramanian et al. have investigated the 

convective instabilities that are induced by ER in porous media [5]. 

Furthermore, Nopparat Pochai investigated the steady-state energy balance 

equation of the temperature profile in a conduction state with a constant heat 

source, the governing equation is solved using a finite difference technique 

[6]. A few studies have looked at two-and three-dimensional models of free 

convection among different types of porous mediums [7-9]. Recently, Fazle 

Mabood et al. have investigated that in porous media, exothermic reaction 

models can be used to solve problems using nonlinear ordinary differential 

equations [10]. The analytical solution of the ER model with a constant heat 
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source with a porous medium has been investigated by Ram Prakash Sharma 

et al. [11]. 

In recent years, the Fibonacci wavelet operational matrix method 

(FWOMM) is one of the most extensively used wavelet methods for computing 

numerical results for linear and nonlinear differential equations. Many 

researchers are discussed applying numerical methods to discover the results 

of linear and nonlinear boundary value problems with exact solutions [12-13]. 

Nowadays, in the literature, there are several types of wavelet-based 

techniques are available for solving nonlinear boundary value problems and 

controlling the challenges in numerical approaches for dealing with nonlinear 

boundary value problems [14-18]. The Fibonacci wavelet method is one of the 

most extensively used wavelet methods for computing numerical results of 

some classes of equations [19-21]. 

In this paper, the operational matrices based on the Fibonacci wavelet 

are established. These Fibonacci wavelet operational matrices are used to 

calculate the estimated solutions of the boundary value problems. This 

methodology moderates the boundary value problem to a set of algebraic 

equations by Fibonacci wavelet operational matrices. With the properties of 

the Fibonacci wavelets, we can abridge the boundary value problem. 

Furthermore, an innovative arithmetical scheme based on the Fibonacci 

wavelets is proposed for the numerical solution of characteristic nonlinear 

boundary value problems to investigate the heat transfer problem on the 

exothermic reactions model in the presence of a porous medium and constant 

heat source. The model concentrates on the driving force to investigate the 

temperature profile. The effects of several parameters are used such as B,   

and , have been discussed in detail and presented in terms of Tables and 

Figures. 

2. Preliminaries of Fibonacci Wavelets 

2.1 Fibonacci wavelets 

2.1.1 Fibonacci polynomials 

In general, the Fibonacci polynomials have been described in terms of 

recurrence relation as [20]; 
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Where,  and  are the roots of the recursion’s companion polynomial 

,12  zxx  and also the Fibonacci polynomials power form representation is 

as follows [20]; 
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The Fibonacci polynomials  zPm
~

 can alternatively be written in a matrix 

form, as seen below: 
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The following satisfying properties of Fibonacci polynomials are as follows 

[19]; 
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2.1.2 Fibonacci wavelets and its approximation 

Fibonacci wavelets are a type of compactly supported wavelet formed by 

Fibonacci polynomials over the interval  .1,0  Generally, the Fibonacci 

wavelets can be represented in the interval  1,0  as [19]. 
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Where, k and n represent the level of resolution ,2,1k  with translation 

parameter ,2,,2,1 1 kn   and  zPm
~

 is the Fibonacci polynomial of degree 

m. With   
l

mm dzPw
0

2~
 where ,1,,2,1,0  Mm   the Fibonacci 

wavelets Equation (6) are also represented in the following way; 
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The Fibonacci wavelets may be used to extend any square-integrable function 

   1,02Lzf   we have [18], 
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By truncating the infinite series above, we obtain; 
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Where, 
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Equation (11) represents coefficients of the Fibonacci wavelet, and also the 

matrix equivalent of in Equation (10) is as follows [19]; 

     ,zazzf T   (12) 

Where F is the discrete of continuous function, and a is a form of row vector 

can be written as; 

 ,,,,,,,,,,,
0,21,21,20,21,12,11,10,1 1 kaaaaaaaaa MM   

 ,,,
1,21,2 11

T

Mkk aa
   (13) 
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and from Equation (8) by using the collocation points given in Equation (15). 
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Generally, we can write the matrix form as follows; 
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For instance, if 2k  and ,4M  we can write the coefficients matrix of 

Fibonacci wavelets as follows; 
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2.1.3 Fibonacci wavelet operational matrices 

In the sub-section, we now construct the operational matrices of Fibonacci 

wavelets in Equation (6), the authors Chen and Hsiao [22] introduce the 

strategy of operational matrices of integration as follows; 

    

z

mnmn zPd

0

,, ,  (17) 

Where P is the order of ,22 11 MM kk    the Fibonacci wavelet operational 

matrix, by applying the power representation of Fibonacci wavelets and 

polynomials of the Equations (8) and (2), as well as binomial expansion of 

  ,12
21 imk nz

   then we get; 
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Integrate the above Equation (18), we have; 
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In terms of Fibonacci wavelets, the function  zRj  may be represented as 

follows; 
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As a result, Equation (19) has become; 
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Where, 
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As a result, the operational integration matrix P for Fibonacci wavelets is 

as follows: 
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In particular, if ,4,2  Mk  we may integrate Equation (8) using suitable 

collocation points provided in Equation (15), we obtain the coefficients of 

operational matrices as follows; 
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






z T

zd
0

80,1 ,0,0,0,
2

1
,0,0,

627

181
,0  

    







z T

zd
0

81,1 ,0,0,0,
418

181
,0,

262

155
,0,

627

181
 

    







z T

zd
0

82,1 ,0,0,0,
166

81
,

539

74
,0,

71

5
,0  

    






 


z T

zd
0

83,1 ,0,0,0,
488

271
,

4

1
,

521

210
,

209

49
,

2763

823
 

    







z T

zd
0

80,2 ,0,0,
627

181
,0,0,0,0,0  

    






 
z T

zd
0

81,2 ,0,
262

155
,0,

418

181
,0,0,0,0  

    







z T

zd
0

82,2 ,
539

74
,0,

71

5
,0,0,0,0,0  
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   .
4

1
,

521

210
,

209

49
,

2763

823
,0,0,0,0

0
83,2 







 
z T

zd  

Therefore, in the following Equation (17), we obtain the form: 

     

z

zPd
0

88818 ,  (25) 

Where, 

,

4

1

521

210

209

49

2763

823
0000

539

74
0

71

5
00000

0
262

155
0

418

181
0000

00
627

181
00000

000
488

271

4

1

521

210

209

49

2763

823

000
166

81

539

74
0

71

5
0

000
418

181
0

262

155
0

418

181

000
2

1
00

627

181
0

88





















































P  

(26) 

Similarly, we double integrate Equation (17), and we obtain Q an 

operational matrix as follows; 

     
z z

mnmn zQd
0 0

,, ,  (27) 

Where, 
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.

2404

23

412

3

684

67

375

2
0000

437

9

1200

139

483

10

460

39
0000

948

77
0

12

1
00000

0
486

83
0

8

1
0000

00
524

21

505

43

1200

139

659

24

351

40

1744

45

00
1001

141

178

19

437

15

240

23

1199

38

509

36

00
8

1

2702

195

948

77
0

12

1
0

00
1351

195

8

1
0

486

83
0

8

1

88






























































Q (28) 

2.2. Fibonacci wavelet operational matrix method of solution 

Let us consider the general form of a second-order boundary value 

problem as; 

,,, 0
02

0
2








 




dz

d
zf

dz

d
 (29) 

Following Shiralashetti et al. [18], we assume that; 

 
   








M

i

T
ll

k

zaza
dz

zd
12

1
2

0
2

,  (30) 

Case (i) Suppose the given boundary conditions as; 

    ,11,00 00   (31) 

Integrating Equation (30) from 0 to z, we get; 

   
 

 
 














M

i

T
ll

k

zPa
dz

d
zPa

dz

d

dz

zd
12

1

000 ,
00

 (32) 

Again integrating Equation (32) from 0 to z and using the first boundary 

condition given in Equation (31), we get; 
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 
 

 
 

 ,
00

12

1

0
0 zQa

dz

d
zzQa

dz

d
zz

M

l

Tz
ll

k












  (33) 

From Equation (33), we can find 
 

,
00

dz

d
 by using the second boundary 

condition given in Equation (31), we get; 

 








M

i

T
ll

k

CaCa
dz

d
12

1

0 ,11
0

 (34) 

Where,  
1

0
,dzzPC li  substituting  

 
,, 0

0 dz

zd
z


  and 

 
,

2
0

2

dz

zd 
 in 

Equation (29), and using the collocation points in Equation (15), result in 

MM kk 11 22    system of algebraic equations, these equations can be solved 

by using Newton’s method with help of Matlab software to obtain the 

required Fibonacci wavelet coefficients .2,,2,1, 1Mla k
l

   Finally 

substituting these obtained coefficients la ’s in Equation (33), to obtain the 

Fibonacci wavelet operational matrix method solution of the Equation (29) 

with (31). 

Case (ii) Suppose the given boundary conditions as; 

 
  ,01,0

0
0

0 


dz

d
 (35) 

Integrating Equation (30), from 0 to z, we get; 

 
  ,01,0 0

0 


dz

zd
 (36) 

Again integrating Equation (36) from 0 to z and using the first boundary 

condition from Equation (35), we get; 

   
 

     









M

l

T
ll

k

zQa
dz

d
zzQaz

12

1

00
0

0 ,00
0

 (37) 

From Equation (37), we can find  00  by using the second boundary 

condition from Equation (35), we get; 
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  






M

i

T
ll

k

CaCa

12

1

0 ,0  (38) 

where,  
1

0
,dzzPC l  and Ta  is the unknown Fibonacci wavelet 

coefficients, substituting  
 

,, 0
0 dz

zd
z


  and 

 
,

2
0

2

dz

zd 
 in Equation (29), and 

by using the collocation points provided in Equation (15), it results in 

MM kk 11 22    system of equations, these equations can be solved by using 

Newton’s method to obtain the required Fibonacci wavelet coefficients 

.2,,2,1, 1Mla k
l

   Finally substitute the obtained coefficients la ’s in 

Equation (37), to obtain the Fibonacci wavelet operational matrix method 

(FWOMM) of the solution of the equations (29) with (35). 

Error Estimate. Absolute error can be obtained by using the relation 

[18] as; 

       .1,0,00   zzzze  (38a) 

Here,  z0  and  z0  are represented by exact solutions and numerical 

results of FWOMM. 

2.3. Fibonacci wavelet operational matrix method of 

implementation 

Test problem 1. Firstly, we consider the linear second-order boundary 

value problem [12] as;  

   
 

   

,

.11,00

,10,036

00

123
0

01

2
0

2

















zezzzz
dz

zd
e

dz

zd zz

 (39) 

Equation (39) has the exact solution   .3
0 zz   Using the method of the 

solution presented in section 2.2, obtaining the FWOMM of the solution as 

follows, substituting the Fibonacci wavelet approximations of 

   
dz

zd

dz

zd 0
2

0
2

,


 and  ,0 z  in Equation (39) and using collocation points in 
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Equation (15), we obtained the system of equations as; 

         ,035 12311  zzzT ezzzezCzQCzPeza   (40) 

Solving the above system of equations by using the algebraic method and 

obtaining the required Fibonacci wavelet coefficients, if ,4,2  Mk         

are ,1213.2,0000.0,0000.0,2247.1,0000.0 54321  aaaaa  

,0000.0,0000.0,2247.1 876  aaa  Finally substituting these 

coefficients in equation (33), we get the FWOMM solution and which is 

presented in Table 1 and Figure 1, and also the comparison with the exact 

solution and Haar wavelet operational matrix method (HWOMM) of the 

solution. 

Table1. Comparison of FWOMM solution with the exact solution and 

HWOMM solution of the test problem 1. 

z Exact 

solution  

HWOMM 

solution 

.4,2  Mk  

FWOMM 

solution 

.4,2  Mk  

HWOMM Absolute 

Error 

HWOMMExact   

FWOMM Absolute 

Error 

FWOMMExact   

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0010 -0.0101 0.0010 0.0111 0.0000 

0.2 0.0080 -0.0312 0.0312 0.0080 0.0000 

0.3 0.0270 -0.0688 0.0270 0.0958 0.0000 

0.4 0.0640 -0.1696 0.0640 0.2336 0.0000 

0.5 0.1250 2.5126 0.1250 -2.3876 0.0000 

0.6 0.2160 0.2275 0.2160 -0.0115 0.0000 

0.7 0.3430 0.3081 0.3430 0.0349 0.0000 

0.8 0.5120 0.4766 0.5120 0.0354 0.0000 

0.9 0.7290 0.7072 0.7290 0.0218 0.0000 
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Figure 1. Solution of the FWOMM with the exact solution of the test problem 

1. 

Test problem 2. Next, consider the second-order nonlinear boundary 

value problem [13] as; 

 
 

   

,

,1100

,1002

00

42
02

0
2














zzz
dz

zd
 (41) 

Equation (41) has the exact solution   .2
0 zz   Using the method of the 

solution presented in section 2.2, obtaining the FWOMM of the solution as 

follows, substituting the Fibonacci wavelet approximations of 
 
2

0
2

dz

zd 
 and 

 ,0 z  in Equation (41) and using collocation points in Equation (15), we 

obtained the nonlinear algebraic system of equations 

        zazzzCzpaza T
M

i

M

i

liiii

k k



















 
 

 

24

2
2

1

2

1

1 1

 

     .0242
 zzzCzPaT  (42) 

Solving the above system of equations by using Newton’s method and 

obtaining the required Fibonacci wavelet coefficients, if ,4,2  Mk  are 

,4142.1,0000.0,0000.0,0000.0,4142.1 5432  aaaaal  
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,0000.0,0000.0,0000.0 876  aaa  Finally substituting these  

coefficients in Equation (33), we get the FWOMM solution and it is presented 

in Table 2 and Figure 2 in comparison with the exact solution and HWOMM 

of the solution. 

Table 2. Comparison of FWOMM solution with the exact solution and 

HWOMM solution of the test problem 2. 

z Exact 

solution  

HWOMM 

solution 

.4,2  Mk  

FWOMM 

solution 

.4,2  Mk  

HWOMM Absolute 

Error 

HWOMMExact   

FWOMM Absolute 

Error 

FWOMMExact   

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0100 0.0100 0.0100 0.0000 0.0000 

0.2 0.0400 0.0400 0.0400 0.0000 0.0000 

0.3 0.0900 0.0900 0.0900 0.0000 0.0000 

0.4 0.1600 0.1600 0.1600 0.0000 0.0000 

0.5 0.2500 0.2500 0.2500 0.0000 0.0000 

0.6 0.3600 0.3600 0.3600 0.0000 0.0000 

0.7 0.4900 0.4900 0.4900 0.0000 0.0000 

0.8 0.6400 0.6400 0.6400 0.0000 0.0000 

0.9 0.8100 0.8100 0.8100 0.0000 0.0000 

 

Figure 2. Numerical solution of FWOMM with the exact solution of the test 

problem 2. 

Heat transfer Problem 3. The mathematical formulation of the 
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problem: we now introduce a simple pseudo-homogeneous model for 

understanding convection driven by an exothermic process. The normal 

continuity and momentum balancing assumptions are required. Assuming 

the Boussinesq approximation holds if Darcy’s law is true. Because density 

differences are minor, they solely affect the body force term. Assuming a high 

Prandtl number for the porous medium. That is, the momentum balance’s 

acceleration terms are minimal. With the stated assumptions, the governing 

equations 

,0 u  (43) 

   ,1 0
0

zf geTTbu
k

p 






 
  (44) 

  ,2 rHTkTuC
t

T
C effpffpmm 




  (45) 

,2 rcDcu
t

c
AfeffAf

Af





  (46) 

Where the first-order reaction rate is given by; 

  ,AfcTkr   (47) 

      ,expexp
0

00 






 


RT

E

RT

E
TkRTEkTk  (48) 

Here, parameters AfcTp ,,  are indicates pressure, temperature, and 

concentration of the fluid u represents superficial,  indicate the porosity or 

fractional profile of the fluid phase, b is the fluid’s density coefficient at room 

temperature ,0T  and the unit vector ze  is vertically upward oriented. Here, 

  ,1 psspffpmm CCC   is the specific heat capacity of the bed per 

unit volume and psspmf CC  ,  are the fluid’s and solid’s respective heat 

capacities per cubic meter. The effD  and effe  are denoted by effective 

thermal diffusivity and conductivity of the bed, k which is denoted by the 

permeability of the porous medium. Equation (45) shows the reaction terms 

as a source while Equation (46) shows them as a sink Equation (46). The heat 

of the reaction as a mole of extent is represented by the constant  ,H  and 
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the reaction rate per unit volume is represented by r. The inter-phase 

concentration and temperature gradients are omitted while constructing the 

continuity Equations (45) and (46). The system is described by a single 

concentration and temperature. For vanish small particle heat and mass 

Damkohler numbers, this pseudo-homogeneous description is valid, which is 

represented as [6], 

 
,

000

c

pff
ph h

dcPTk
Da   (49) 

 
,

0

c

p
pm k

dTk
Da   (50) 

Where, pd  is the size of the particle, ck  and ch  are the coefficients of local 

heat and mass transfer. The density change as concentration is disregarded 

in Equation (44). If the reactions do not entail a variation in the number of 

moles, this model is appropriate. The situation of a rectangular shape box 

 LxHz  0,0  is taken into consideration. The following 

corresponding boundary criteria apply to the box’s bottoms and sidewalls [6]. 

,

,0

,0

,0


















nAf

n

n

ec

eT

eu

 (51) 

The unit external normal is denoted by the letter .ne  We will get the 

simplest Dirichlet boundary conditions by opening the box to the atmosphere 

at the top. At ,Hz   we have; 

,

,

,

,

0

0
















 

AfAf cc

TT

p

 (52) 

The following values are defined to translate the system of equations into a 

non-dimensional form as follows; 
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 

 

,

,,

,,,,

,,,,

,,,,

2
020

2

0

0

0



































































meff

pff

eff

m
e

pmm

pff

m

m

a

pff

eff
m

Af

Af

HTk

k

kgHbTC
Ra

D
L

H

L

C

C

u

u

H
u

ppk

C

k

C

c
x

H

tu

L

x
x

T

TT

H

z
z

 (53) 

Here, z and x are the vertical and horizontal non-dimensional coordinate 

axes, correspondingly, and  denotes the non-dimensional time. The mainly 

represents three nondimensional parameters such as temperature profile , 

pressure gradient , and concentration term c, with we are also introduced 

the velocity profile term u  and we applying dimensionless velocity u. The 

stream function formula is introduced in the article [5]; 

,

,

,



















x

z

z

x
 (54) 

We obtain the equations, substituting Equations (53) and (54), into the 

Equations (43-52); 
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depending on; 
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Here, Ra  represent Rayleigh number; this is indeed the ratio of heat 

diffusion characteristic time to natural convection characteristic time. The 

thermal Thiele parameter 2  is the ratio of diffusion to reaction 

characteristic time. In the absence of natural free convection, the value B is 

the maximal temperature that can be reached. The  nondimensional 

activation energy is a metric for the rate of a reaction constant’s temperature 

sensitivity. The proportion of the heat to mass diffusivity is known as the 

Lewis number Le. The variable  is the aspect ratio of the box and the 

parameter  is the ratio of volume heat capacities. Natural convection is 

considered to be completely absent 0  in the base case, and the result is 

only influenced by reaction and diffusion. Assume that the state parameters 

c,  depending on the vertical coordinate based on the medial boundary 

conditions. According to the assumption, the mathematical equations describe 

the state of conductivity (diffusion). 
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depending on; 

.

,1at,0,1

,0at0,0















zc

z
dz

d

zd

cd
 (61) 

Equations (59-61) can be integrated with a steady-state situation to; 

 
 

,1 0
0 B

z
zc


  (62) 

Here, the steady-state concentration and temperature profiles are 0c  and ,0  

correspondingly. The two-point boundary value problems for the diffusion 

(conduction) state’s temperature profile are given by inserting this in the 

constant energy balance, Equation (59). We obtained as; 
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 (64) 

Where, B is the variable of maximum achievable temperature in the absence 

of natural free convection. The 2  represents the ratio of the characteristic 

typical time of diffusion of the heat generator  is the non-dimension 

activation energy. Equation (63) becomes Equation (65) if the source of heat 

remains constant  .0  

,01 02
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With boundary conditions are; 
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 (66) 

Case I. FWOMM solution of the Equations (65) with (66) is as follows: We 

now consider the two-point boundary value problem for the constant heat 

source  0  in the porous medium, the temperature profile  ,0 z  in 

Equation (63). We get a constant heat source Equation (65).  

Using the method of the solution presented in section 2.2, obtaining the 

FWOMM of solution as follows, substituting the Fibonacci wavelet 

approximations of 
 
2

0
2

dz

zd 
 and  ,0 z  in Equation (65) and using collocation 

points in Equation (15), we obtained the system of equations as; 

           






M

i

T
iiii

k

BCzQzaBCzQza

12

1

222222 .0   

(68) 

Solving the above system of equations by using the Newton’s method and 

obtaining the required Fibonacci wavelet coefficients for ,4,2  Mk  are 

,3560.3,0050.0,2832.0,0046.0,1583.3 54321  aaaaa  
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,0133.0,3041.0,2341.0 876  aaa  finally substituting these 

coefficients in Equation (37), we get the FWOMM solution and it is presented 

in Table 3 and Figures 3 and 4 in comparison with the FDM (Finite 

Difference Method) solution and Haar wavelet operational matrix method 

(HWOMM) of solution. 

Table 3. Comparison of FWOMM solution  z0  with the FDM solution and 

HWOMM solution of the Equations (65) with (66) for .12,5.02  B  

z Exact 

solution  

HWOMM 

solution 

.4,2  Mk  

FWOMM 

solution 

.4,2  Mk  

HWOMM Absolute 

Error 

HWOMMExact   

FWOMM Absolute 

Error 

FWOMMExact   

0.0 2.4804 2.4004 2.4804 0.0800 0.0000 

0.1 2.4566 2.3798 2.4566 0.0768 0.0000 

0.2 2.3851 2.3217 2.3851 0.0634 0.0000 

0.3 2.2655 2.2105 2.2654 0.0550 0.0001 

0.4 2.0972 2.0611 2.0971 0.0361 0.0001 

0.5 1.8793 1.8606 1.8781 0.0187 0.0012 

0.6 1.6109 1.5985 1.6099 0.0124 0.0010 

0.7 1.2904 1.2881 1.2897 0.0023 0.0007 

0.8 0.9164 0.9161 0.9160 0.0003 0.0004 

0.9 0.4870 0.4884 0.4869 0.0014 0.0001 

 

Figure 3. Solutions of FWOMM with the FDM and HWOMM solution of the 

Equations (65) with (66) for .12,5.02  B  
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Figure 4. Effect of FWOMM solution  z0  of the Equations (65) with (66) 

for altered values of  with a constant value of .10B  

Case II. FWOMM solution of the Equations (63) with (64) is as follows; 

Next, we consider the two-point nonlinear boundary value problem for the 

Conduction state's temperature profile  z0  in the presence of a porous 

medium. Using the method of the solution presented in section 2.2, obtaining 

the FWOMM of solution as follows, substituting the Fibonacci wavelet 

approximations of 
 
2

0
2

dz

zd 
 and  ,0 z  in Equation (63) and using collocation 

points in Equation (15), we obtained the nonlinear system of equations as; 
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T  (69) 

Solving the above system of equations by using the Newton’s method and 

obtaining the required Fibonacci wavelet coefficients if ,1,4,2  Mk  

are ,7931.5,1788.0,0496.1,1609.0,2428.5 54321  aaaaa  

,8724.2,0594.1,4545.3 876  aaa  finally substituting these 

coefficients in equation (37), we get the FWOMM solution and it is presented 

in Table 4 and Figures 5 and 6 in comparison with the HWOMM of the 

solution. 
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Table 4. Comparison of FWOMM solution  00  with the HWOMM solution 

of the Equations (63) with (64) for .1,12,5.02  B  

z FWOMM solution 

.4,2  Mk  

 

0.0 4.3246 4.5053 

0.1 4.2903 4.4617 

0.2 4.1975 4.3338 

0.3 4.0043 4.1195 

0.4 3.7486 3.8170 

0.5 3.3932 3.4381 

0.6 2.9168 2.9418 

0.7 2.3427 2.3499 

0.8 1.6579 1.6610 

0.9 0.8688 0.8708 

 

Figure 5. Numerical solution of FWOMM with the HWOMM solution of the 

Equations (63) with (64) for .1,12,5.02  B  
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Figure 6. Effect of FWOMM solution  z0  of the Equations (63) with (64) 

for altered values of  with .12,5.02  B  

3. Results and Discussions 

The study presents, that the computations were performed numerically to 

analyze the physical boundary value problem for different values of 

parameters that explain the detail, and the solutions are shown in terms of 

tables and graphs. Our aim here is to contribute to the qualitative behavior 

and physical attitudes of the problem. The differential equations (39), (41), 

(63), and (65) with corresponding boundary conditions are thoroughly 

examined by using the Fibonacci wavelet operational matrix method 

(FWOMM). 

We observed that Tables 1 and 2 show the comparison of FWOMM 

solutions with the exact, and HWOMM solutions. Figures 1 and 2 show the 

comparison of FWOMM solutions with the exact solutions. The FWOMM 

solutions are more accurate than the HWOMM solutions, and in excellent 

agreement with the exact solutions.  

We have considered the highest temperature in the absence of natural 

convection B and the ratio of conduction to heat generation 2  the non-

dimensional activation energy  because the heat source is constant. We 

observed that Table 3, shows the comparisons of the steady-state temperature 

profile  z0  of the FWOMM, Finite difference method (FDM), and HWOMM 
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for the parameters .4,2  Mk  ,12,5.02  B  the comparisons of 

FWOMM solutions are more accurate results as compared to the HWOMM 

solutions are represented in Table 3. Figure 3 shows a graphical depiction of 

the results using the finite difference methodology [5], HWOMM, and 

FWOMM with good agreement. We observed that FWOMM provides a more 

accurate solution than the classical HWOMM. Displayed Figure 4 shows the 

influence of various variations of  with a constant value B on the 

temperature profile  .0 z  When the Heat generation parameter  is 

increased, also increases the temperature profile  z0  with a constant value 

B. Also, we have considered the conduction state’s temperature profile  z0  

in the presence of a porous medium. In Equation (63) the nondimensional 

activation energy  is considered. Displayed Table 4, shows the comparison of 

the FWOMM with the HWOMM solutions. We see the Table 4, that a 

comparison of FWOMM solutions is more accurate than the HWOMM 

solutions. And also observed the Figure 5, comparisons of the Fibonacci 

solutions are more accurate as compared to the Haar results. Displayed 

Figure 6 shows the influence of various variations of  with a constant value 

,12,5.02  B  of the temperature profile  .0 z  When the non-

dimensional activation energy  is increased, also increases the temperature 

profile  z0  with a constant value of .12,5.02  B  We observed in 

Tables and Graphs, that the numerical outcomes obtained by using FWOMM 

are in very excellent agreement with the obtained Haar wavelet operational 

matrix method (HWOMM) results. On the contrary, the typical Haar 

wavelets technique produces a good solution, but FWOMM produces excellent 

solutions as compared to HWOMM. As a result, the FWOMM solutions are 

easier to implement than the HWOMM results. 

4. Conclusions 

In this paper, we discuss an arithmetical scheme to solve boundary value 

problems. Using the operational matrices based on the Fibonacci wavelets, 

the characteristic nonlinear boundary value problems can be transformed 

into a set of algebraic equations. Then we can govern the unidentified 

coefficients. To check the efficiency of the proposed method, the second-order 
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linear and nonlinear boundary value problem having the exact solution is 

considered test problems 1 and 2. Consequences display the Fibonacci 

wavelet operational matrix method is an appropriate and vigorous scheme in 

discovery resolutions to boundary value problems. Further, we have 

described an exothermic reaction model in the presence of porous media with 

a constant heat source. The governing Equations (63) and (65) of the 

problems with proper boundary conditions are reduced into the characteristic 

nonlinear boundary value problems by applied similarity transformations. 

These problems are solved by using the Fibonacci wavelet operational matrix 

method and the results are presented in terms of tables and graphs. The 

efficiency of the proposed method is confirmed by determining the 

comparison of resolutions which are demonstrated in Tables and Figures. 

Figures 4 and 6, demonstrate the influence of various variations with 

constant values parameters on the temperature profile. This shows the 

comparison of steady-state temperature profiles for the exact solution, Haar 

wavelet operational matrix method of solution, and efficiency of the proposed 

Fibonacci wavelet operational matrix method of solution. 
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