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Abstract 

The present study is carried out to examine the combined effects of Soret and Dufour on 

unsteady flow of a viscous, incompressible and electrically conducting fluid past through 

inclined cylinder in the presence of transversely applied uniform magnetic field. In the Fluid 

model, the medium of the fluid flow has been taken porous and the geometry of cylinder is 

inclined at an angle  from vertical plane. The temperature of the fluid near the surface of 

cylinder is oscillating and concentration level near the surface increase linearly with time. The 

non-dimensional governing equations have been solved numerically by using Crank-Nicolson 

implicit finite difference method and also discussed the stability of the solution. The velocity 

profile is discussed with the help of graphs drawn for different parameters and the solution of 

the MHD flow model is unconditionally stable. Therefore, the scheme is compatible. Stability 

and compatibility ensures convergence.  

1. Introduction 

The effects of chemical reaction on free convection boundary layer over a 

various shapes such as plate, sphere and others have been studied among 

researchers because it has become more important recently. The chemical 
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reaction effect along with influence of magnetic field on such a flow within 

porous media has play important role in engineering applications. Heat 

transfer analysis of boundary layer flow over hyperbolic stretching cylinder 

was studied by Majeed et al. [1] and they have obtained the numerical results 

for the model by using Keller box method. They noticed that, increase in the 

values of curvature parameter leads to increase in velocity and temperature 

distribution. They have also found the skin-friction coefficient reduces and 

Nusselt number enhances with an increase in curvature parameter. Soret 

and Dufour effects on mixed convection along a vertical wavy surface in a 

porous medium with variable properties were explained by Srinivasacharya 

et al. [2]. In their paper, the governing flow model solved numerically and 

explained the flow velocity and concentration of fluid are decreased with 

increases in Dufour number while the temperature and rate of heat and mass 

transfer are enhanced consistently. Kumar et al. [3] worked on chemical 

reaction effect on MHD flow past an impulsively started vertical cylinder 

with variable temperature and mass diffusion. Casson fluid flow past on 

vertical cylinder in the presence of chemical reaction and magnetic field was 

analysed by Kumar and Rizvi [4].  

Dufour and Soret effects on unsteady MHD convective heat and mass 

transfer flow due to a rotating disk was studied by Maleque [5]. Alam and 

Rahman [7] has worked on Dufour and soret effects on MHD free convective 

heat and mass transfer flow past a vertical porous flat plate embedded in a 

porous medium and the equations of the model are solved numerically by 

using the Nachtsheim-Swigert shooting method. They noticed that Large 

Darcy number leads to the increase of the velocity and decrease of the 

temperature as well as concentration of the fluid increase within the 

boundary layer. Jain and Bohra [8] worked on Soret and Dufour effects on 

radiative free convection flow and mass transfer over a sphere with velocity 

slip and thermal jump. Hayat et al. [9] worked on  numerical simulation for 

nonlinear radiative flow by convective cylinder and found that the flow 

velocity decreases and temperature increases when magnetic parameter is 

enhanced. Unsteady MHD free convection oscillatory Couette flow through a 

porous medium with periodic wall temperature in presence of chemical 

reaction and thermal radiation was studied by Reddy et al. [10]. They have 

used to analytically method to solve the coupled non-linear governing 
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equations and found that chemical reaction parameter increases the fluid 

velocity while decreased the concentration level of the fluid. Abbas et al. [11] 

has presented fluid model on heat transfer analysis due to an unsteady 

stretching/shrinking cylinder with partial slip condition and suction. They 

have solved flow model numerically by using Runge-Kutta-Fehlberg method. 

Unsteady MHD flow through porous medium past an exponentially 

accelerated inclined cylinder with variable oscillating wall temperature in the 

presence of chemical reaction was studied by us [6]. The flow model under 

consideration analyzes the combined effects of Soret and Dufour on unsteady 

MHD flow past through inclined cylinder with variable oscillating wall 

temperature. The problem of the flow model is solved by numerically using 

Crank-Nicolson implicit finite-difference technique.  

2. Mathematical Analysis 

In this paper, consider unsteady MHD flow of an incompressible, viscous, 

electrically conducting fluid mixture past through a moving inclined cylinder 

of radius .0r  Here the x-axis is taken along the axis. The cylinder is inclined 

at an angle  from vertical plane and the radial coordinate r is taken normal 

to the cylinder.  The gravitational acceleration g is acting downward. The 

magnetic field 0B  of uniform strength is applied perpendicular to the flow.  

During the motion, the direction of the magnetic field changes along with the 

plate in such a way that it always remains perpendicular to it. This means, 

the direction of magnetic field is tied with the plate. Initially it has been 

considered that the plate as well as the fluid is at the same temperature .T  

The species concentration in the fluid is taken as C  for all .0t  At time 

,0t  the cylinder starts exponentially accelerated with acceleration 

parameter b and temperature of the Wall wT  is oscillating with phase angle 

.t  The concentration wC  near the surface is raised linearly with respect to 

time. Then under these assumptions and the Boussinesq’s approximation, the 

flow is governed by the following system of equations: 
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Initial and boundary conditions are as follows: 
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Here u is the velocity of fluid, g-the acceleration due to gravity,                

-volumetric coefficient of thermal expansion, t-time, T-temperature of the 

fluid,  -volumetric coefficient of concentration expansion, C-species 

concentration in the fluid, -the kinematic viscosity, -the density, pC -the 

specific heat at constant pressure, k-thermal conductivity of the fluid, D-the 

mass diffusion coefficient, wT -temperature of the plate at wCz ,0 -species 

concentration at the plate 0,0 Bz  -the uniform magnetic field, K-the 

permeability parameter,  cK -chemical reaction, -electrical conductivity.  

Equations (1), (2), and (3) are converted to dimensionless form by the 

following non-dimensional quantities: 
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where u  is the dimensionless Primary velocity, v -the secondary velocity, b -

dimensionless acceleration parameter, t -dimensionless time, -the 



  COMBINED EFFECTS OF SORET AND DUFOUR ON MHD FLOW … 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 5, March 2024 

393 

dimensionless temperature, C -the  dimensionless concentration, rG - 

thermal Grashof number, mG -mass Grashof number, -the coefficient of 

viscosity, K -the dimensionless permeability parameter, 0K -chemical 

reaction parameter, rP -the Prandtl number, cS -the Schmidt number, fD - 

Dofour number, rS -Soret number M-the magnetic parameter. 

The flow model is as follows in dimensionless form: 
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The boundary conditions (4) that result are as follows: 















RCu

RtCtCosut

Cut

as,0,0,0

0at,,,1:0

Reveryfor,0,0,0:0

 (9)  

By removing bars from the equations above, we obtain 

u
K

MuCCosGCosG
R

u

RR

u

t

u
mr

11
2

2















  (10) 

2

2

2

2

 

11

R

C
D

RPRRPt f
rr 

















   (11) 

2

2

2

2

 

11

R
S

R

C

SRR

C

St

C
r

cc 

















   (12) 

The boundary conditions become 
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3.  Method of Solution 

Boundary and initial conditions (13) are used to solve the nonlinear 

partial differential equations (10) to (12). The Crank-Nicolson implicit finite 

difference method is used to numerically solve these non-linear partial 

differential equations. The following are the finite difference equations that 

relate to equations (10) to (12): 
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In the above solution, the index i refers to R and j refers to time 

jj tttt  1,  and .1 jj RRR    For calculating the values of ,u  and 

C at time t, it compute the values at time tt   as follows: here, substitute 
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,1,,2,1  Ni   as N is corresponded to . The implicit Crank-Nicolson 

finite difference method is a second order method   2to   in time and has no 

restriction on space and time steps, that is, the method is unconditionally 

stable. The computation is executed for 002.0,1.0  tR  and procedure 

is repeated till .40R  

 

Figure A. Finite Difference grids. 

The implicit method provides solutions for the stable fluid model. Matrix 

inversions are called for by this procedure, which we were already done in a 

prior step. This problem has to do with initial-boundary values for spatial 

grids with a finite number of points. 

As a result, the relevant flow model equations may not always guarantee 

mesh convergence. In order to optimise numerical efficiency, we used the 

tridiagonal technique to solve the two-point conditions governing the primary 

connected governing system equations of momentum, energy, and diffusion. 

The method's numerical stability is guaranteed by the implicit nature of the 

numerical approach, and the process's convergence (consistency) is quite 

satisfactory. Therefore, the strategy makes sense. Consistency and stability 

ensure convergence. 

4. Stability Analysis of the Solution 

The stability criterion of the finite difference scheme for constant mesh 

sizes are analyzed by using Von-Neumann Technique. This method was 
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explained by Carnahan et al. (1969). In the Fourier expansion, the general 

term for Cu ,,   at a time arbitrarily called ,0t  are assumed to be of the 

form Rie   where .1i  At a later time, these terms will become, 
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Equations (20) to (22) can be rewritten as, 
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Eliminating  H    and     in equation (23) by using (24) and (25). The 

resultant equation is of the form, 

.' 321  AHAA   (26) 

.54  AHAH   (27) 

.76  AHA   (28) 

Equations (26) to (28) can be written in matrix form as, 

.

0

0

76

54

321
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








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


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
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
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


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H   (29) 

In above matrix, 
 
       AEb

SaG

Ab

G
A

A

A
A rmr
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
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
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1
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For obtaining the stability condition regarding this explicit finite 

difference solution, the dimensionless time difference t  is very small i.e. 

tends to zero. Under this condition, 05 A  and 0.6 A  According 

stability analysis of the finite difference scheme, the modulus of each Eigen 

value of the amplification matrix does not exceed unity. Since the matrix 

equation (27) in triangular form, the Eigen values are its diagonal elements. 

Therefore, the Eigen values of the amplification matrix are 

.734211 AAA   Since the real part of F is greater than or equal to 

zero, thus 11 A  similarly, 14 A  and .17 A  Hence, the finite 

difference scheme is unconditionally stable. The Crank-Nicolson scheme has 

a truncation error of  ,22 RtO   i.e. the temporal truncation error is 

significantly small. It tends to zero as t  and R  tend to zero. So, the 

scheme is compatible. Stability and compatibility ensures convergence. 

5. Results and Discussion 

In this paper, the numerically results were obtained and these results 

shown graphically with the help of following figures. Figures 1 to 8 illustrate 

the study of flow behavior of MHD fluid for various parameters, including the 

thermal Grashof number  ,Gr  mass Grashof number  ,Gm  angle of 

inclination of surface  ,  permeability parameter  ,K  angular frequency 

 ,e  magnetic field parameter  ,M  Dufour number  ,fD  Soret number 
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 .rS  Figure 1 shows that the velocities increase throughout the boundary 

layer region as the mass Grashof number Gm  increases. Figure 2 shows that 

speeds grow as the thermal Grashof number .Gr  This indicates that the 

MHD flow is accelerated as a result of an increase in buoyant force caused by 

a rise in the thermal Grashof number. The positive values of Gr  indicate that 

the cylinder’s surface has cooled via free convection. As a result, heat is 

transferred from the vertical cylinder into the fluid, raising its temperature 

and boosting the buoyant force. Additionally, it can be observed that when 

the thermal Grashof number rises, the peak values of the velocity grow fast 

close to the surface and then slowly decelerate to the free stream velocity. In 

light of this, it may be said that buoyancy force tends to increase fluid velocity 

close to the surface. Figure 3 demonstrates the fluid’s velocity drops as the 

plate angle  0  rises. The fluid's velocity decreases as the surface slopes away 

from vertical, which is consistent with the actual flow. The influence of the 

Dufour number is shown in Figure 4. It is obvious that the velocity 

distribution in the boundary layer increases as the Dufour number increases. 

Furthermore, we see that the velocity increases with an increase in the 

permeability parameter K (figure 5), which is obvious given that an increase 

in porosity of the medium. As a result, the resistance of the porous medium 

reduces as the porosity parameter K increases, which tends to speed up the 

flow. It is observed from figure 6 that the effect of increasing values of the 

parameter M results in decreasing the fluid velocity. It is due to the 

application of transverse magnetic field that acts as Lorentz’s force which 

retards the flow. Figure 7 depicts the influence of the Soret number at 

various points in time. It can be seen that when the Soret number rises, the 

velocity also increases. It is noticed that the velocity decreases as the angular 

frequency is increased (figure 8). 
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Figure 1. Velocity u for different values of Gm  

 

Figure 2. Velocity u for different values of Gr  

 

Figure 3. Velocity u for different values of  
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Figure 4. Velocity u for different values of fD  

 

Figure 5. Velocity u for different values of K 

 

Figure 6. Velocity u for different values of M 
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Figure 7. Velocity u for different values of rS  

 

Figure 8. Velocity u for different values of . 

6. Conclusion 

The numerical analysis for the model under discussion, the governing 

non-linear partial differential equations were transformed into non-

dimensional form. Equations for motion, diffusion, and energy make up the 

model. Standard sets of the parameter values have been taken in order to 

investigate the solutions found. We found that when the values of the 

permeability parameter, Soret, Dufour, and Grashof numbers, porosity of the 

medium is increased then the fluid's velocity increases. While the other 

parameters like surface's angle, angular frequency and the magnetic field 

parameter, the pattern is reversed. The MHD flow model's solution is 

unconditionally stable and Convergence is guaranteed by compatibility with 

stability. We discovered that the numerical results match the actual flow 

characteristics of MHD fluid. 
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