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Abstract

In this paper, we have introduced the notion of intuitionistic fuzzy contra y* generalized

continuous mappings. Furthermore we have provided some properties of intuitionistic fuzzy

contra y* generalized continuous mappings and discussed some fascinating theorems.
I. Introduction

Atanassov [1] introduced the idea of intuitionistic fuzzy sets using the
notion of fuzzy sets. Coker [2] introduced intuitionistic fuzzy topological

spaces using the notion of intuitionistic fuzzy sets. Later this was followed by
the introduction of intuitionistic fuzzy y* generalized closed sets by Riya, V.
M and Jayanthi, D [7] in 2017 which was simultaneously followed by the

introduction of intuitionistic fuzzy y* generalized continuous mappings [8] by
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the same authors. We have now extended our idea towards intuitionistic
fuzzy contra y* generalized continuous mappings and discussed some of their

properties.
2. Preliminaries

Definition 2.1[1]. An intuitionistic fuzzy set (IFS for short) A is an object

having the form
A= {(x nal) va) s x e X)

where the functions py : X — [0,1] and v4 : X — [0, 1] denote the degree
of membership (namely p4(x)) and the degree of non-membership (namely
va(x)) of each element x e X to the set A, respectively, and
0<pg(x)+vy(x)<1 for each x € X. Denote by IFS(X), the set of all

intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by A = (x, pa, v4)
instead of denoting A = {(x, pa(x), va(x)) : x € X}.

Definition 2.2[1]. Let A and B be two IFSs of the form

A= {(x 1al) va) s x e X)
and
B = {(x, up(x), vp(x) : x e X

Then,

(@) A c B ifandonly if py(x) < pp(x) and v, (x) > vp(x) forall x e X,
(b) A =B ifandonlyif A < B and A o B,

(© A = {(x, valx), pax)) : x € XJ,

(d) AUB = {(x, pa(x) v pp(x), valx) A vp(x)) : x € X},

() ANB = {{x, pga(x) Anplx), valx) v vp)) : x € X}.

The intuitionistic fuzzy sets 0. = (x,0,1) and 1. =(x,1,0) are

respectively the empty set and the whole set of X.
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Definition 2.3[2]. An intuitionistic fuzzy topology (IFT in short) on Xis a
family t of IFSs in X satisfying the following axioms:

1) 0.,1. e,

(i) Gy NGy € 1 for any Gy, Gy € 1,

(i) UG; e 7 for any family {G; : i € J} e t.

In this case the pair (X, t) is called an intuitionistic fuzzy topological

space (IFTS in short) and any IFS in 1 is known as an intuitionistic fuzzy

open set (IFOS in short) in X. The complement A° of an IFOS A in an IFTS
(X, 1) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4[12]. Two IFSs A and B are said to be g-coincident (AqB
in short) if and only if there exits an element x € X such that p4(x) > vg(x)
or v4(x) < pp(x).

Definition 2.5[12]. Two IFSs A and B are said to be not g-coincident (B
in short) if and only if A < B€.

Definition 2.6[3]. An intuitionistic fuzzy point (IFP for short), written as
DP(a,p): 1s defined to be an IFS of X given by

) {(a, B) ifx=p,
P(a,p) = (0,1) otherwise.

An IFP p(,, p) 1s said to belong to a set Aif a < py and B 2 vy.
Definition 2.7[4]. An IFS A = (x, ny, v4) in an IFTS (X, 1) is said to
be an

(1) intuitionistic fuzzy y <closed set (IFyCS in short) if
cl(int(A)) N int(cl(A)) < A

(11) intuitionistic fuzzy y open set (IFyOS in short) if
A c int(cl(A)) U cl(int(A))

Definition 2.8[4]. Let A be an IFS in an IFTS (X, t). Then the y-interior

and y-closure of A are defined as
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yint(A) = U{G | G is an IFyOSin Xand G c A}
vcl(A) =U{K | K isanIFyCSin Xand A c K}
Note that for any IFS A in (X, 1), we have ycl(A¢) = (yint(A))° and
int(A)° = (yint(A))°.
Result 2.9(6]. Let A be an IFSin (X, 1), then
yel(A) o A U cl(int(A)) N int(cl(A))
yint(A) < A U cl(int(A)) N int(cl(A))

Corollary 2.10[3]. Let A, A;(I € J) be intuitionistic fuzzy sets in X and
B, B;(j € K) be intuitionistic fuzzy sets in Y and f : X - Y be a function.
Then

a) Ay € Ay = f(41) < f(Ag)

b) By = By = [ 1(B) < [ (By)

©) A = fUf(A)) [If fis injective, then A = f~H(f(A))]
d) f/(f"Y(B)) c B [If f is surjective, then B = f(f*(B))]
e) f1(UB)) = U\ (B))

b (N B;) =NfH(By)

g [71(0~) = 0.

h) (1) = 1.

D f7H(BY) = (F1(B))

Definition 2.11[7]. An IFS A of an IFTS (X, 1) is said to be an

intuitionistic fuzzy y* generalized closed set (briefly IFy*GCS) if
cl(int(A)) N int(cl(A)) < U whenever A < U and Uis an IFOS in (X, 7).
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Definition 2.12[8]. A mapping f:(X,1) > (Y,c) is called an

intuitionistic fuzzy y* generalized continuous (IFy*G continuous for short)

mapping if f~1(V) is an IFy*GCS in (X, 1) for every IFCS Vof (Y, o).
3. Intuitionistic Fuzzy Contra y* Generalized Continuous Mappings

In this section we have introduced intuitionistic fuzzy contra v*

generalized continuous mappings and investigated some of their properties.
Definition 3.1. A mapping f:(X,1) > (Y,0) is said to be an
intuitionistic fuzzy contra y* generalized continuous (IF contra "G
continuous for short) mapping if f_l(A) is an IFy*GCS in X for every IFOS A
inY.
We use the notation A = (x, (ug, up), (Vo> vp))  instead of
A = (x, (a/ug, b/pp), (@/vug, b/vy)) in the following examples.

Example 3.2 Let X ={a, b}, Y = {u, v} and
Gy = (x, (0.5,, 0.45), (0.5,, 0.63)), G = (, (0.4, 0.4,), (0.6, 0.6,)). Then
1=1{0-,G;,1.} and o ={0., Gy, 1.} are IFTs on X and Y respectively.
Define a mapping f : (X, 1) > (Y, o) by f(a) =u and f(b) =v. The IFS
Gy = (y, (0.4,, 0.4,), (0.6, 0.6,)) is an IFOS in Y. Then

f1(Gy) = (x, (0.4, 0.4,), (0.6, 0.6,)) is an IFy*GCS in X as [ H(Gy) < G,
and cl(int(f"1(Gy))) N int(cl (f1(Gy))) = 0~ < G;, where G is an IFOS in X.

Therefore fis an IF contra y* G continuous mapping.

Theorem 3.3. Every IF contra continuous mapping is an IF contra v* G
continuous mapping but not conversely in general.

Proof. Let f : (X, t) > (Y, o) be an IF contra continuous mapping [6].
Let V be an IFOS in Y. Then f~1(V) is an IFCS in X, by hypothesis. Since
every IFCS is an IFy*GCS [8], (V) is an IFy* GCS in X. Hence fis an IF

contra y" G continuous mapping.
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Example 3.4. In Example 3.2, fis an IF contra y* G continuous mapping
but since f1(Gy) = (x, (0.44, 0.43), (0.6,, 0.6,)) is not an IFCS in X, as
c(f1(Gy)) = Gf # f71(Gy), f is not an IF contra continuous mapping.

Theorem 3.5. Every IF contra semi continuous mapping is an IF contra
v* G continuous mapping but not conversely in general.

Proof. Let f : (X, 1) - (Y, o) be an IF contra semi continuous mapping.
Let Vbe an IFOS in Y. Then f1(V) is an IFSCS in X, by hypothesis. Since
every IFSCS is an IFy*GCS [8], /1(V) is an IFy* GCS in X. Hence fis an IF

contra y* G continuous mapping.

Example 3.6. In Example 3.2, fis an IF contra y* G continuous mapping.
We  have  int(cl(f '(Gp))) = int(Gf) = G « [ 1(Ga) = (x, (0.4, 0.4),
(0.64, 0.63)). Hence f~1(Gy) is not an IFSCS in X.

Hence fis not an IF contra semi continuous mapping.

Theorem 3.7. Every IF contra pre continuous mapping is an IF contra
v" G continuous mapping but not conversely in general.

Proof. Let f : (X, t) > (Y, o) be an IF contra pre continuous mapping
[6]. Let V be an IFOS in Y. Then f (V) is an IFPCS in X, by hypothesis.
Since every IFPCS is an IFy*GCS [8], f1(V) is an IFy*GCS in X. Hence f is
an IF contra y* G continuous mapping.

Example 38.8. Let X={a, b and 1t={0.,G},Gy, 1.} and
c=1{0.,G3,1.} be IFTs on X and Y vrespectively, where
Gy = (x, (0.5,, 0.6}), (0.5,, 0.4,)) and Gy = (x, (0.4,, 0.3,), (0.6,, 0.7,)) and

Gs = (y, (0.4,, 0.4,), (0.6, 0.6,)). Define a mapping f : (X, 1) > (Y, o) by
f(a) = u and f(b) = v. The IFS G3 = (y, (0.4,, 0.4,), (0.6,, 0.6,)) is an IFOS

in Y. Then f (Gs)=(x,(0.4,,0.4,),(0.6,,0.6,) is an IFy*GCS as
cl(int (f~1(Gy))) N int(cl (f(G3)) = Gf N Gy = Gy = Gywhere [f(Gs) < Gy
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but not an IFPCS as cl(int(f~}(G3))) = Gf ¢ f1(G3). Hence f is not an IF

contra pre continuous mapping.

Theorem 3.9. Every IF contra a continuous mapping is an IF contra v* G
continuous mapping but not conversely in general.

Proof. Let f : (X, ©) > (Y, o) be an IF contra a continuous mapping [6].
Let Vbe an IFOS in Y. Then f~1(V) is an IFaCS in X, by hypothesis. Since
every IFaCS is an IFy*GCS [8], (V) is an IFy* GCS in X. Hence f is an IF
contra y* G continuous mapping.

Example 3.10. Let X =1{a, b}, Y = {u, v} and
Gy = (x, (0.5, 0.4), (0.54, 0.6;)), Gg = (v, (0.4,, 0.4,), (0.6, 0.6,)). Then
1=1{0-,G;,1.} and o ={0., Gy, 1.} are IFTs on X and Y respectively.
Define a mapping f : (X, 1) > (Y, o) by f(a) =u and f(b) =v. The IFS
Gy = (v, (0.4,, 0.4,), (0.6, 0.6,)) is an IFOS in Y. Then
f1(Gy) = (x, (0.4, 0.4,), (0.6,,0.6,)) is an IFy*GCS in X as
cl(int (f(G2)) Nint(cl (f'(Gp))) = 0~ = Gy = 0 < Gywhere [(Gy) < G
but not an IFyCS in (X, 1) as cl(int(f1(GS))) = Gf < f1(Gs). Hence fis not

an IF contra a continuous mapping.

Theorem 3.11. Every IF contra y continuous mapping is an IF contra
v" G continuous mapping but not conversely in general.

Proof. Let f : (X, 1) = (Y, o) be an IF contra y continuous mapping [4].
Let V be an IFOS in Y. Then f~1(V) is an IFyCS in X, by hypothesis. Since
every IFyCS is an IFy*GCS [8], /7 }(V) is an IFy* GCS in X. Hence fis an IF
contra y" G continuous mapping.

Example 3.12. Let X ={a, b}, Y = {u, v} and
G1 = (x, (0.54, 0.6p), (0.54, 0.43)), G = (x, (0.4,, 0.3p), (0.64, 0.7)) and
Gs = (y, (0.4,, 0.6,), (0.6, 0.4,)). Then t={0-, Gi, Gy, 1.} and
o =1{0.,Gs,1.} are IFTs on X and Y respectively. Define a mapping

Advances and Applications in Mathematical Sciences, Volume 23, Issue 9, July 2024



802 V. M. RIYA and D. JAYANTHI
f:(X,1)—> ({,0) by fla)=u and f(b) =v. The IFS
Gs = (y, (0.4,, 0.6,), (0.6, 0.4,)) is an IFOS in Y. Then
f1(Gy) = (x, (0.4, 0.6,), (0.6,,0.4,)) is an IFy*GCS in X as
cllint (£ (G3))) N int(el (F(G3)) = Gf < Gy = Gf = Gy and f(Gy) < Gy
but not an IFyCS in (X, 1) as cl(int(f 1(G3)) Nint(cl(f1(G3)))
= Gf < G, = Gf « f1(G3). Hence f1(Gj) is not an IFYCS in X. Hence f is
not an IF contra y continuous mapping.

Remark 3.13. Every IF contra generalized continuous mapping is an IF
contra y* G continuous mapping but not conversely in general.

Proof. Let [ : (X, 1) » (Y, o) be an IF contra generalized continuous
mapping [9]. Let V be an IFOS in Y. Then f (V) is an IFGCS in X, by
hypothesis. Since every IFGCS is an IFy*GCS [8], f (V) is an IFy*GCS in

X. Hence fis an IF contra y* G continuous mapping.

Example 3.14. In Example 3.2, f is an IFy"G continuous mapping but
not an IF contra generalized continuous mapping as cl(f 1(Gy)) = Gf ¢ Gy,
where f71(Gy) c Gy.

Remark 3.15. Every IF contra y generalized continuous mapping is an IF
contra y" G continuous mapping but not conversely in general.

Proof. Let f : (X, 1) > (Y, o) be an IF contra y generalized continuous
mapping [10]. Let V be an IFOS in Y. Then f~1(V) is an IFyGCS in X, by
hypothesis. Since every IFyGCS is an IFy* GCS [8], f}(V)is an IFy*GCS in
X. Hence fis an IF contra y* G continuous mapping.

Example 3.16. Let X ={a, b}, Y = {u, v} and
G1 = (x, (0.54, 0.364), (0.5, 0.73)), G = (x, (0.4,, 0.3), (0.6, 0.7)) and

Gs = (y, (0.3, 0.2,), (0.7,, 0.8,)). Then t={0-, Gy, Gy, 1.} and
o =1{0.,Gs,1.} are IFTs on X and Y respectively. Define a mapping
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f:(X,1)—> ({,0) by fla)=u and f(b) =v. The IFS
Gs = (y, (0.3, 0.2,), (0.7,, 0.8,)) is an IFOS in Y. Then
f1(Gy) = (x, (0.3,,0.2,), (0.7,,0.8,)) is an IFy*GCS in X as
cl(int (f(G5))) Nint(cl (f1(G3)) = 0. NGy = 0~ < Gy, Gy and
fY(G3) = Gy, Gy but not an IFYCS in (X, 1) as ad(int(f1(Gy))
= 71(Gs) U cllint(cl(f(G3)) = f(G3)UGf = Gf « Gy, Gy. Hence f is
not an IF contra y generalized continuous mapping.

Remark 3.17. Every IF contra generalized semi continuous mapping is
an IF contra y* G continuous mapping but not conversely in general.

Proof. Let f:(X,7) > (Y,5) be an IF contra generalized semi
continuous mapping [11]. Let V be an IFOS in Y. Then f (V) is an IFGSCS
in X. Since every IFGSCS is an IFy*GCS [8], /}(V) is an IFy*GCS in X.
Hence fis an IF contra y" G continuous mapping.

Example 3.18. In Example 3.16, f is an IF contra y"G continuous

mapping but not an IF contra generalized semi continuous mapping as G3 is

an IFOS in Y, but f%G3) is not an IFGSCS in X, since
scl(f1(Gy)) = fH(Gs) Uint(cl(f1(G3)) = f(G3)U Gy = Gy ¢ Gy, but
f(Gs) < Gs.

The relation between various types of intuitionistic fuzzy continuity is
given in the following diagram. In this diagram ‘cts.” means continuous.
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Theorem 3.19. A mapping f:(X, 1) »> (Y, ) is an IF contra y'G
continuous mapping if and only if the inverse image of each IFCS in Y is an

IFy*GOS in X.

Proof. Necessity: Let A be an IFCS in Y. This implies A¢ is an IFOS in
Y. Then f}4¢) is an IFy*GCS in X, by hypothesis. Since
FHAS) = (F71(AQ))F, F1(A) is an IFy* GOS in X.

Sufficiency. Let A be an IFOS in Y. Then A is an IFCS in Y. By
hypothesis f1(A¢) is IFy*GOS in X. Since f~1(4¢) = (f 1(A)F, (f 1 (A)) is
an IFy*GOS in X. Therefore f1(A) is an IFy*GCS in X. Hence f is an IF
contra y* G continuous mapping.

Theorem 3.20. Let f : (X, 1) > (Y, o) be a bijective mapping. Suppose
that one of the following properties hold:

() f~Y(cl(B)) < int(yel(f1(B))) for each IFSBin Y
(i) cl(y int(f"1(B))) < £ 1(int(B)) for each IFS Bin Y
(i) f(cl(yint(A))) < int(f(A)) for each IFSA in X

(iv) f(cl(A)) < int(f(A)) for each IFyOS A in X

Then f is an IF contra y* G continuous mapping.

Proof (i) = (ii) is obvious by taking complement of (i).

() = @i) Let Ac X. Put B=f(A) in Y. This implies
A=fMNfA)=f"(B) in X Now cdlyint(4)) = c(yint(f " (B)))
c f'int(B)) by (i). Therefore f(cl(yint(A)) < f(f 1(B))) = int(B)
= int(f(A)).

(i) = (iv) Let A ¢ X be an IFyOS. Then yint(A) = A. By hypothesis,
f(cl(y int(A)))  int(£(A)). Therefore f(cl(A)) = f(cl(y int(A))) < int(f(A)).

Suppose (iv) holds. Let A be an IFOS in Y. Then f~! (A) is an IFS in X
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and yint(f71(A4)) is an IFyOS in X. Hence by hypothesis, f(cl(yint(f1(A))))
c int(f(y int(f 1(A4)))) < int(f(f1(A))) = int(A) < A. Therefore
cl(y int(fH(A) = fH(F(llyint(F 7 (A))) < f(A). Now  clint(f ' (A)))
c c(yint(f71(4)) = f1(A). This implies f'(A) is an IFPCS in X and
hence an IFy*GCS in X [7]. Thus fis an IF contra y* G continuous mapping.

Theorem 3.21. Let f : (X, 1) — (Y, o) be a mapping. Suppose that one of
the following properties hold:

() f(ycl(A)) < int(f(A)) for each IFS A in X

(i) yel(f~Y(B)) c £~ (int(B)) for each IFSBin Y
(i) £~ H(cl(B)) < y int(f "1 (B)) for each IFS Bin Y
Then f is an IF contra y* G continuous mapping.

Proof. (i) = (ii) Let B = Y. Then f }(B) is an IFS in X. By hypothesis,
fGrel(f~(B)) < int(f(f~(B)) < int(B). Now vel(f(B)
< [ (fGel(F (BY) < [ (int(B))

(i1) = (i11) is obvious by taking complement in (ii).

Suppose (iii) holds. Let A be an IFCS in Y. Then cl(A) = A and f1(A) is
an IFS in X. Now [fY(A)=FYcl(A)) c yint(f 1(A) < f(A), by
hypothesis. This implies f~'(A) is an IFyOS in X and hence an IFy* GOS in X
[7]. Therefore fis an IF contra y* G continuous mapping.

Theorem 3.22. Let f : (X, 1) » (Y, ) be a bijective mapping. Then f is

an IF contra v* G continuous mapping if cl(f(A)) c f(yint(A)) for every IFS
Ain X

Proof. Let A be an IFCS in Y. Then cl(A) = A and f~}(A) is an IFS in X.

By hypothesis cl(f(f 1(B)) < f(yint(f }(A)). Since f is an onto,
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f(f"Y(A)) = A. Therefore A = cl(A) = cl(f(f*(A))) < f(y int(f1(A))). Now
fH(A) < FH(F(vint(f 1 (A)) = yint(F ' (4)) = f7'(A). Hence f(A) is an
IFyOS in X and hence an IFy*GOS in X. Thus f is an IF contra y'G

continuous mapping.

Theorem 3.23. If f: (X, 1) > (Y, 6) is an IF contra y" G continuous

mapping, where X is an IFy*Tl/Z space, then the following conditions hold:

() vel(f~Y(B)) < f~1(y int(B)) for every IFOS in Y

(i) f7'(cl(y int(B))) < vy int(f~1(B)) for every IFCS Bin Y

Proof. (i) Let B = Y be an IFOS. By hypothesis f!(B) is an IFy* GCS
in X. Since X is an IFy*Tl/Z space, f1(B) is an IFyCS in X. This implies
vel(f~1(B)) = £ (B) < (v int(B))

(1) can be proved easily by taking the complement of (i).

Theorem 3.24. If f: (X, 1) > (Y, 6) is an IF contra y" G continuous
mapping and g :(Y,o) = (Z,8) is an IF continuous mapping then
gof:(X,1) > (Z,38) isan IF contra y* G continuous mapping.

Proof. Let Vbe an IFOS in Z. Then g '(V) is an IFOS in Y, since g is an

IF continuous mapping. Since f is an IF contra y*G continuous mapping,

fYg1(V)) is an IFy*GCS in X. Therefore gof is an IF contra y*G

continuous mapping.

Theorem 3.25. If f: (X, 1) = (Y, o) is an IF contra y*G continuous

mapping and g : (Y, o) > (Z, 8) is an IF contra continuous mapping then

gof: (X, 1) > (Z,8) isan IFy" G continuous mapping.

Proof. Let Vbe an IFOS in Z. Then g (V) is an IFCS in Y, since g is an

IF contra continuous mapping. Since f is an IF contra y*G continuous
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mapping, f ‘(g '(V)) is an IFy*GOS in X. Therefore gof is an IFy*G

continuous mapping.
Theorem 3.26. If f: (X, 1) - (Y, c) is an IFy* G irresolute mapping
and g:(Y,o0)—>(Z,8) is an IF conira continuous mapping then

gof (X, 1) > (Z,8) isan IFy" G continuous mapping.

Proof. Let Vbe an IFOS in Z. Then g '(V) is an IFCS in Y, since g is an
IFC continuous mapping. As every IFCS is an IFy*GCS, g (V) is an
IFy*GCS in Y. Since f is an IFy*G irresolute mapping, f '(g~*(V)) is an

IF y*GCS in X. Therefore g o f is an IF contra y" G continuous mapping.

Remark 3.27. The composition of two IF contra y*G continuous
mappings need not be an IF contra y*G continuous mapping. This can be
seen from the following example.

Example 3.28. Let X ={a,b},Y ={u,v} and Z ={p, q}. Then
1=1{0-, G, Gy, 1.}, 6 = {0, G5, 1.} and 8§ =1{0., Gy, 1.}
G; = (x, (0.54, 0.7p), (0.2, 0.2)), G = (x, (0.6, 0.8p), (0.2, 0.2;)),

Gy = (3, (0.5,, 0.6,), (0.5,, 0.4,)) and Gy = (2, (0.5,, 0.8,), (0.2,, 0.2,)).
Then (X,1),(Y,o) and (Z,8) are IFTSs. Now define a mapping
f:(X,1)> ¥,0) by fla)=u and f(b)=v and g:(Y,c) > (Z,§) by
g(u) = p and g(v) = q. Here f and g are IFCy* G continuous mappings but
their composition gof : (X, 1) > (Z,8) defined by g(f(a))=p and
g(f())) =q is not an IF contra 7 G continuous mapping since
Gy = (2, (0.5,, 0.8;), (0.2, 0.2,)) is an IFOS in Z  but
FH(g7HGy)) = (x, (0.54, 0.8), (0.2, 0.2,)) is not an IFy*GCS in X as

fHe(Gy) < Gy but cl(int(cl(f 1 (G4)) N int(cl(f~ (g7 (G4)))
=1. e Gz.

Theorem 3.29. For a mapping f:(X, 1) = (Y, ), where X is an
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IFy*Tl/z space, the following are equivalent:

() fis an IF contra y* G continuous mapping

(ii) For every IFCS A in Y and for every IFP p(yg) € X, if f(P(,p))gA
then Do), intlf 1 (4)
(iii) For every IFCS in Y and for any IFP p ) € X, if f(p(a’ﬁ))qA then

there exists an IFy* GOS B such that f(P(o,p))y B and f(B) c A.

Proof. (i) = (ii) Let f be an IF contra y* continuous mapping. Let A ¢ Y

be an IFCS and let p(q p) € X. Also let f(p(q,p)),A then p(a,B)qf_l(A). By
hypothesis f~}(A4) is an IFy*GOS in X. Since X is an IF y*Tl/z space, f1(A)
is an IFyOS in X. Hence yint(f"}(A))=f1(A). This implies

P(a,B)gY int(f71 (A))

(i) = (1) Let A <Y be an IFCS then f1(A) is an IFS in X. Let
P(a,p) € X and let f(p((x,B))qA then p(a,B)qf_l(A). By hypothesis this
implies P(a, ), int(f"1(A)). That is /7 }(A)c yint(f1(4). But
yint(f1(A)) < f1(A). Therefore yint(f 1(A)) < f1(A). Thus f~1(A) is an
IFyOS in X and hence an IFy*GOS in X [7]. This implies fis an IF contra y*G

continuous mapping.

(i) = (iii) Let A = Y be an IFCS then f'(A) is an IFS in X. Let
P(a,p) € X. Also let f(p(a,ﬁ))qA then p(a’ﬁ)qf_l(A). By hypothesis this
implies P p)," int(f"1(A)). That is f7}(A)c< yint(f1(4). But
yint(f1(A)) < f1(A). Therefore yint(f 1(A)) < f(A). Thus f~1(A) is an
IFyOS in X and hence an IFy*GOS in X [7]. Let f_l(A) = B. Therefore

P(a.p)gB and f(B) = f(f1(4)) c A.
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(iii) = (i) Let A < Y be an IFCS then f }(A) is an IFS in X. Let
P(o,p) € X. Also let f(p(p)),A then p(, p)f '(A). By hypothesis there
exists an IFy*GOS B in X such that f(P(o,p))yB and f(B)c A. Let
B =f"'(A). Since X is an IFy"T}/5 space, f '(4) is an IFyOS in X and

yint(f71(4)) ¢ f~1(A). Therefore Pa,p),Y int(f71(A4)).

Theorem 3.30. A mapping f: (X, 1) > (Y, o) is an IF contra y"G
continuous mapping if f~*(ycl(B)) < int(f*(B)) for every IFS Bin Y.

Proof. Let B c Y be an IFCS. Then cl(B) = B. Since every IFCS is an
IFyCS, vel(B) = B.. Now by hypothesis, f~%(B) = f1(ycl(B)) < int(f(B))
c f~Y(B). This implies f~}(B) = int(f ' (B)). Therefore f!(B) is an IFOS in
X. Hence fis an an IF contra continuous mapping. Then by Theorem 3.3, f is
an IF contra y* G continuous mapping.

Theorem 3.31. A mapping f:(X, 1) »> (Y, o) is an IF contra y' G
continuous mapping, where X is an IF y*Tl/z space if and only if
f~Y(yel(B)) < y int(f "L (cl(B))) for every IFS Bin Y.

Proof. Necessity: Let B ¢ Y be an IFS. Then cl(B) is an IFCS in Y. By
hypothesis, f!(c/(B)) is an IFy*GOS in X. Since X is an IFy*Tl/g space,
fYcl(B)) is an IFyOS in X. Therefore f '(yvcl(B)) < vint(f 1(cl(B)))
= yint(f " (cl(B))).

Sufficiency. Let B = Y be an IFCS. Then cl(B) = B. By hypothesis,
Y (yel(B)) < yint(f 1 (cl(B))) = y int(f *(cl(B))). Since every IFCS is an
IFyCS, B is an IFyCS. So ycl(B) = B. Therefore f~'(B)= f"'(ycl(B))
c yint(f1(B)) = f"1(B). This implies f~1(B) is an IFyOS in X and hence an

IF y*GOS in X. Hence fis an IF contra y* G continuous mapping.
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