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Abstract 

In this paper, we have introduced the notion of intuitionistic fuzzy contra   generalized 

continuous mappings. Furthermore we have provided some properties of intuitionistic fuzzy 

contra   generalized continuous mappings and discussed some fascinating theorems. 

I. Introduction 

Atanassov [1] introduced the idea of intuitionistic fuzzy sets using the 

notion of fuzzy sets. Coker [2] introduced intuitionistic fuzzy topological 

spaces using the notion of intuitionistic fuzzy sets. Later this was followed by 

the introduction of intuitionistic fuzzy   generalized closed sets by Riya, V. 

M and Jayanthi, D [7] in 2017 which was simultaneously followed by the 

introduction of intuitionistic fuzzy   generalized continuous mappings [8] by 
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the same authors. We have now extended our idea towards intuitionistic 

fuzzy contra   generalized continuous mappings and discussed some of their 

properties. 

2. Preliminaries 

Definition 2.1[1]. An intuitionistic fuzzy set (IFS for short) A is an object 

having the form 

     XxxxxA AA  :,,  

where the functions  1,0:  XA  and  1,0:  XA  denote the degree 

of membership (namely  xA  and the degree of non-membership (namely 

 xA  of each element Xx   to the set A, respectively, and 

    10  xx AA  for each .Xx   Denote by IFS(X), the set of all 

intuitionistic fuzzy sets in X. 

An intuitionistic fuzzy set A in X is simply denoted by AAxA  ,,  

instead of denoting      .:,, XxxxxA AA   

Definition 2.2[1]. Let A and B be two IFSs of the form 

     XxxxxA AA  :,,  

and 

     .:,, XxxxxB BB   

Then, 

(a) BA   if and only if    xx BA   and    xx BA   for all ,Xx   

(b) BA   if and only if BA   and ,BA   

(c)      ,:,, XxxxxA AA
c   

(d)          ,:,, XxxxxxxBA BABA   

(e)          .:,, XxxxxxxBA BABA   

The intuitionistic fuzzy sets 1,0,0~ x  and 0,1,1~ x  are 

respectively the empty set and the whole set of X. 
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Definition 2.3[2]. An intuitionistic fuzzy topology (IFT in short) on X is a 

family τ of IFSs in X satisfying the following axioms: 

(i) ,1,0 ~~   

(ii) 21 GG   for any ,, 21 GG  

(iii) iG  for any family   .:  JiGi  

In this case the pair  ,X  is called an intuitionistic fuzzy topological 

space (IFTS in short) and any IFS in  is known as an intuitionistic fuzzy 

open set (IFOS in short) in X. The complement cA  of an IFOS A in an IFTS 

 ,X  is called an intuitionistic fuzzy closed set (IFCS in short) in X. 

Definition 2.4[12]. Two IFSs A and B are said to be q-coincident  BAq  

in short) if and only if there exits an element Xx   such that    xx BA   

or    .xx BA   

Definition 2.5[12]. Two IFSs A and B are said to be not q-coincident (B 

in short) if and only if .cBA    

Definition 2.6[3]. An intuitionistic fuzzy point (IFP for short), written as 

 ,,p  is defined to be an IFS of X given by  

 
 

 

 


.otherwise1,0

,if,
,

px
p  

An IFP  ,p  is said to belong to a set A if A  and .A  

Definition 2.7[4]. An IFS AAxA  ,,  in an IFTS  ,X  is said to 

be an 

(i) intuitionistic fuzzy  closed set (IFCS in short) if 

      AAclAcl intint   

(ii) intuitionistic fuzzy  open set (IFOS in short) if 

     AclAclA intint    

Definition 2.8[4]. Let A be an IFS in an IFTS  ., X  Then the γ-interior 

and -closure of A are defined as 
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   GGA |int   is an IFOS in X and AG   

   KKAcl |  is an IFCS in X and KA   

Note that for any IFS A in  ,, X  we have     cc AAcl int  and 

     .intint
cc

AA   

Result 2.9[6]. Let A be an IFS in  ,, X  then 

       AclAclAAcl intint   

       AclAclAA intintint   

Corollary 2.10[3]. Let  JIAA i ,  be intuitionistic fuzzy sets in X and 

 KjBB i ,  be intuitionistic fuzzy sets in Y and YXf :  be a function. 

Then 

a)    2121 AfAfAA   

b)    2
1

1
1

21 BfBfBB    

c)   AffA 1  [If f is injective, then   AffA 1 ] 

d)    BBff 1  [If f is surjective, then   BffB 1 ] 

e)    jj BfBf 11     

f)    jj BfBf 11     

g)   ~~
1 00 f   

h)   ~~
1 11 f  

i)      .11 cc BfBf    

Definition 2.11[7]. An IFS A of an IFTS  ,X  is said to be an 

intuitionistic fuzzy 
  generalized closed set (briefly IF

 GCS) if 

      UAclAcl intint   whenever UA   and U is an IFOS in  ., X  
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Definition 2.12[8]. A mapping     ,,: YXf  is called an 

intuitionistic fuzzy   generalized continuous (IF  G continuous for short) 

mapping if  Vf 1  is an IF  GCS in  ,X  for every IFCS V of  ., Y  

3. Intuitionistic Fuzzy Contra   Generalized Continuous Mappings 

In this section we have introduced intuitionistic fuzzy contra   

generalized continuous mappings and investigated some of their properties. 

Definition 3.1. A mapping     ,,: YXf  is said to be an 

intuitionistic fuzzy contra   generalized continuous (IF contra  G 

continuous for short) mapping if  Af 1  is an IF  GCS in X for every IFOS A 

in Y. 

We use the notation    babaxA  ,,,,  instead of 

   baba babaxA  ,,,,  in the following examples. 

Example 3.2. Let    vuYbaX ,,,   and 

        .6.0,6.0,4.0,4.0,,6.0,5.0,4.0,5.0, 21 vuvubaba yGxG   Then 

 ~1~ 1,,0 G  and  ~2~ 1,,0 G  are IFTs on X and Y respectively. 

Define a mapping     ,,: YXf  by   uaf   and   .vbf   The IFS 

   vuvuyG 6.0,6.0,4.0,4.0,2   is an IFOS in Y. Then 

     vuvuxGf 6.0,6.0,4.0,4.0,2
1   is an IF

 GCS in X as   12
1 GGf   

and         ,0intint 1~2
1

2
1 GGfclGfcl    where 1G  is an IFOS in X. 

Therefore f is an IF contra 
 G continuous mapping. 

Theorem 3.3. Every IF contra continuous mapping is an IF contra 
 G 

continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra continuous mapping [6]. 

Let V be an IFOS in Y. Then  Vf 1  is an IFCS in X, by hypothesis. Since 

every IFCS is an IF
 GCS [8],  Vf 1  is an IF

 GCS in X. Hence f is an IF 

contra 
 G continuous mapping. 



V. M. RIYA and D. JAYANTHI  

Advances and Applications in Mathematical Sciences, Volume 23, Issue 9, July 2024 

800 

Example 3.4. In Example 3.2, f is an IF contra  G continuous mapping 

but since      babaxGf 6.0,6.0,4.0,4.0,2
1   is not an IFCS in X, as 

     fGfGGfcl c ,2
1

12
1    is not an IF contra continuous mapping. 

Theorem 3.5. Every IF contra semi continuous mapping is an IF contra 

 G continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra semi continuous mapping. 

Let V be an IFOS in Y. Then  Vf 1  is an IFSCS in X, by hypothesis. Since 

every IFSCS is an IF  GCS [8],  Vf 1  is an IF  GCS in X. Hence f is an IF 

contra  G continuous mapping. 

Example 3.6. In Example 3.2, f is an IF contra  G continuous mapping. 

We have          ,4.0,4.0,intint 2
1

112
1

ba
c xGfGGGfcl    

  .6.0,6.0 ba  Hence  2
1 Gf   is not an IFSCS in X. 

Hence f is not an IF contra semi continuous mapping. 

Theorem 3.7. Every IF contra pre continuous mapping is an IF contra 

 G continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra pre continuous mapping 

[6]. Let V be an IFOS in Y. Then  Vf 1  is an IFPCS in X, by hypothesis. 

Since every IFPCS is an IF
 GCS [8],  Vf 1  is an IF

 GCS in X. Hence f is 

an IF contra  G continuous mapping.  

Example 3.8. Let  baX ,  and  ~21~ 1,,,0 GG  and 

 ~3~ 1,,0 G  be IFTs on X and Y respectively, where 

   babaxG 4.0,5.0,6.0,5.0,1   and    babaxG 7.0,6.0,3.0,4.0,2   and 

    .6.0,6.0,4.0,4.0,3 vuvuyG   Define a mapping     ,,: YXf  by 

  uaf   and   .vbf   The IFS    vuvuyG 6.0,6.0,4.0,4.0,3   is an IFOS 

in Y. Then      vuvuxGf 6.0,6.0,4.0,4.0,3
1   is an IF

 GCS as 

        12213
1

3
1 intint GGGGGfclGfcl c   where   13

1 GGf   
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but not an IFPCS as      .int 3
1

13
1 GfGGfcl c    Hence f is not an IF 

contra pre continuous mapping.  

Theorem 3.9. Every IF contra α continuous mapping is an IF contra  G 

continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra α continuous mapping [6]. 

Let V be an IFOS in Y. Then  Vf 1  is an IFαCS in X, by hypothesis. Since 

every IFαCS is an IF  GCS [8],  Vf 1  is an IF  GCS in X. Hence f is an IF 

contra  G continuous mapping. 

Example 3.10. Let    vuYbaX ,,,   and 

        .6.0,6.0,4.0,4.0,,6.0,5.0,4.0,5.0, 21 vuvubaba yGxG   Then 

 ~1~ 1,,0 G  and  ~2~ 1,,0 G  are IFTs on X and Y respectively. 

Define a mapping     ,,: YXf  by   uaf   and   .vbf   The IFS 

   vuvuyG 6.0,6.0,4.0,4.0,2   is an IFOS in Y. Then 

     vuvuxGf 6.0,6.0,4.0,4.0,2
1   is an IF  GCS in X as  

        1~1~2
1

2
1 00intint GGGfclGfcl   where   12

1 GGf   

but not an IFCS in  ,X  as      .int 2
1

12
1 GfGGfcl cc    Hence f is not 

an IF contra α continuous mapping. 

Theorem 3.11. Every IF contra  continuous mapping is an IF contra 

 G continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra  continuous mapping [4]. 

Let V be an IFOS in Y. Then  Vf 1  is an IFCS in X, by hypothesis. Since 

every IFCS is an IF
 GCS [8],  Vf 1  is an IF

 GCS in X. Hence f is an IF 

contra 
 G continuous mapping. 

Example 3.12. Let    vuYbaX ,,,   and 

       babababa xGxG 7.0,6.0,3.0,4.0,,4.0,5.0,6.0,5.0, 21   and 

    .4.0,6.0,6.0,4.0,3 vuvuyG   Then  ~21~ 1,,,0 GG  and 

 ~3~ 1,,0 G  are IFTs on X and Y respectively. Define a mapping 
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    ,,: YXf  by   uaf   and   .vbf   The IFS 

   vuvuyG 4.0,6.0,6.0,4.0,3   is an IFOS in Y. Then 

     vuvuxGf 4.0,6.0,6.0,4.0,3
1   is an IF  GCS in X as 

        11113
1

3
1 intint GGGGGfclGfcl cc    and   13

1 GGf   

but not an IFCS in  ,X  as        3
1

3
1 intint GfclGfcl    

 .3
1

111 GfGGG cc   Hence  3
1 Gf   is not an IFCS in X. Hence f is 

not an IF contra  continuous mapping. 

Remark 3.13. Every IF contra generalized continuous mapping is an IF 

contra  G continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra generalized continuous 

mapping [9]. Let V be an IFOS in Y. Then  Vf 1  is an IFGCS in X, by 

hypothesis. Since every IFGCS is an IF  GCS [8],  Vf 1  is an IF  GCS in 

X. Hence f is an IF contra  G continuous mapping. 

Example 3.14. In Example 3.2, f is an IF  G continuous mapping but 

not an IF contra generalized continuous mapping as    ,112
1 GGGfcl c    

where   .12
1 GGf   

Remark 3.15. Every IF contra  generalized continuous mapping is an IF 

contra 
 G continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra  generalized continuous 

mapping [10]. Let V be an IFOS in Y. Then  Vf 1  is an IFGCS in X, by 

hypothesis. Since every IFGCS is an IF  GCS [8],  Vf 1 is an IF  GCS in 

X. Hence f is an IF contra 
 G continuous mapping. 

Example 3.16. Let    vuYbaX ,,,   and 

       babababa xGxG 7.0,6.0,3.0,4.0,,7.0,5.0,36.0,5.0, 21   and 

    .8.0,7.0,2.0,3.0,3 vuvuyG   Then  ~21~ 1,,,0 GG  and 

 ~3~ 1,,0 G  are IFTs on X and Y respectively. Define a mapping 
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    ,,: YXf  by   uaf   and   .vbf   The IFS 

   vuvuyG 8.0,7.0,2.0,3.0,3   is an IFOS in Y. Then 

     vuvuxGf 8.0,7.0,2.0,3.0,3
1   is an IF  GCS in X as 

        21~1~3
1

3
1 ,00intint GGGGfclGfcl    and 

  213
1 , GGGf   but not an IFCS in  ,X  as    3

1int Gfcl   

         .,int 21113
1

3
1

3
1 GGGGGfGfclclGf cc     Hence f is 

not an IF contra  generalized continuous mapping. 

Remark 3.17. Every IF contra generalized semi continuous mapping is 

an IF contra  G continuous mapping but not conversely in general. 

Proof. Let     ,,: YXf  be an IF contra generalized semi 

continuous mapping [11]. Let V be an IFOS in Y. Then  Vf 1  is an IFGSCS 

in X. Since every IFGSCS is an IF  GCS [8],  Vf 1  is an IF  GCS in X. 

Hence f is an IF contra  G continuous mapping. 

Example 3.18. In Example 3.16, f is an IF contra  G continuous 

mapping but not an IF contra generalized semi continuous mapping as G3 is 

an IFOS in Y, but  3
1 Gf   is not an IFGSCS in X, since 

           ,int 2113
1

3
1

3
1

3
1 GGGGfGfclGfGfscl     but 

  .23
1 GGf   

The relation between various types of intuitionistic fuzzy continuity is 

given in the following diagram. In this diagram ‘cts.’ means continuous. 
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Theorem 3.19. A mapping     ,,: YXf  is an IF contra  G 

continuous mapping if and only if the inverse image of each IFCS in Y is an 

IF  GOS in X. 

Proof. Necessity: Let A be an IFCS in Y. This implies cA  is an IFOS in 

Y. Then  cAf 1  is an IF  GCS in X, by hypothesis. Since 

      AfAfAf
cc 111 ,    is an IF  GOS in X. 

Sufficiency. Let A be an IFOS in Y. Then cA  is an IFCS in Y. By 

hypothesis  cAf 1  is IF  GOS in X. Since        ccc AfAfAf 111 ,    is 

an IF  GOS in X. Therefore  Af 1  is an IF  GCS in X. Hence f is an IF 

contra  G continuous mapping. 

Theorem 3.20. Let     ,,: YXf  be a bijective mapping. Suppose 

that one of the following properties hold: 

(i)       BfclBclf 11 int    for each IFS B in Y 

(ii)       BfBfcl intint 11    for each IFS B in Y 

(iii)       AfAclf intint   for each IFS A in X 

(iv)      AfAclf int  for each IFOS A in X 

Then f is an IF contra 
 G continuous mapping. 

Proof (i)  (ii) is obvious by taking complement of (i). 

(ii)  (iii) Let .XA   Put  AfB   in Y. This implies 

    BfAffA 11    in X. Now       BfclAcl 1intint   

  Bf int1  by (ii). Therefore         BBffAclf intint 1    

  .int Af   

(iii)  (iv) Let XA   be an IFOS. Then   .int AA   By hypothesis, 

      .intint AfAclf   Therefore          .intint AfAclfAclf   

Suppose (iv) holds. Let A be an IFOS in Y. Then  Af 1  is an IFS in X 
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and   Af 1int   is an IFOS in X. Hence by hypothesis,     Afclf 1int   

           .intintintint 11 AAAffAff    Therefore 

           .intint 1111 AfAfclffAfcl    Now    Afcl 1int   

     .int 11 AfAfcl    This implies  Af 1  is an IFPCS in X and 

hence an IF  GCS in X [7]. Thus f is an IF contra  G continuous mapping. 

Theorem 3.21. Let     ,,: YXf  be a mapping. Suppose that one of 

the following properties hold: 

(i)      AfAclf int  for each IFS A in X 

(ii)      BfBfcl int11    for each IFS B in Y 

(iii)      BfBclf 11 int    for each IFS B in Y 

Then f is an IF contra  G continuous mapping. 

Proof. (i)  (ii) Let .YB   Then  Bf 1  is an IFS in X. By hypothesis, 

         .intint 11 BBffBfclf    Now   Bfcl 1  

       .int111 BfBfclff     

(ii)  (iii) is obvious by taking complement in (ii). 

Suppose (iii) holds. Let A be an IFCS in Y. Then   AAcl   and  Af 1  is 

an IFS in X. Now          ,int 1111 AfAfAclfAf    by 

hypothesis. This implies  Af 1  is an IFOS in X and hence an IF
 GOS in X 

[7]. Therefore f is an IF contra 
 G continuous mapping. 

Theorem 3.22. Let     ,,: YXf  be a bijective mapping. Then f is 

an IF contra 
 G continuous mapping if      AfAfcl int  for every IFS 

A in X. 

Proof. Let A be an IFCS in Y. Then   AAcl   and  Af 1  is an IFS in X. 

By hypothesis        .int 11 AffBffcl    Since f is an onto, 
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   .1 AAff   Therefore          .int 11 AffAffclAclA    Now 

           .intint 11111 AfAfAfffAf    Hence  Af 1  is an 

IFOS in X and hence an IF  GOS in X. Thus f is an IF contra  G 

continuous mapping. 

Theorem 3.23. If     ,,: YXf  is an IF contra  G continuous 

mapping, where X is an IF 21T  space, then the following conditions hold: 

(i)      BfBfcl int11    for every IFOS in Y 

(ii)       BfBclf 11 intint    for every IFCS B in Y 

Proof. (i) Let YB   be an IFOS. By hypothesis  Bf 1  is an IF  GCS 

in X. Since X is an IF 21T  space,  Bf 1  is an IFCS in X. This implies 

       .int111 BfBfBfcl     

(ii) can be proved easily by taking the complement of (i). 

Theorem 3.24. If     ,,: YXf  is an IF contra  G continuous 

mapping and     ,,: ZYg  is an IF continuous mapping then 

    ,,: ZXfg   is an IF contra  G continuous mapping. 

Proof. Let V be an IFOS in Z. Then  Vg 1  is an IFOS in Y, since g is an 

IF continuous mapping. Since f is an IF contra 
 G continuous mapping, 

  Vgf 11   is an IF  GCS in X. Therefore fg   is an IF contra  G 

continuous mapping. 

Theorem 3.25. If     ,,: YXf  is an IF contra 
 G continuous 

mapping and     ,,: ZYg  is an IF contra continuous mapping then 

    ,,: ZXfg   is an IF
 G continuous mapping. 

Proof. Let V be an IFOS in Z. Then  Vg 1  is an IFCS in Y, since g is an 

IF contra continuous mapping. Since f is an IF contra 
 G continuous 
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mapping,   Vgf 11   is an IF  GOS in X. Therefore fg   is an IF  G 

continuous mapping. 

Theorem 3.26. If     ,,: YXf  is an IF  G irresolute mapping 

and     ,,: ZYg  is an IF contra continuous mapping then 

    ,,: ZXfg   is an IF  G continuous mapping. 

Proof. Let V be an IFOS in Z. Then  Vg 1  is an IFCS in Y, since g is an 

IFC continuous mapping. As every IFCS is an IF  GCS,  Vg 1  is an 

IF  GCS in Y. Since f is an IF  G irresolute mapping,   Vgf 11   is an 

IF  GCS in X. Therefore fg   is an IF contra  G continuous mapping. 

Remark 3.27. The composition of two IF contra  G continuous 

mappings need not be an IF contra  G continuous mapping. This can be 

seen from the following example. 

Example 3.28. Let    vuYbaX ,,,   and  ., qpZ   Then 

   ~3~~21~ 1,,0,1,,,0 GGG   and  ~4~ 1,,0 G  

        ,2.0,2.0,8.0,6.0,,2.0,2.0,7.0,5.0, 21 babababa xGxG   

   vuvuyG 4.0,5.0,6.0,5.0,3   and     .2.0,2.0,8.0,5.0,4 qpqpzG   

Then     ,,, YX  and  ,Z  are IFTSs. Now define a mapping 

    ,,: YXf  by   uaf   and   vbf   and     ,,: ZYg  by 

  pug   and   .qvg   Here f and g are IFC
 G continuous mappings but 

their composition     ,,: ZXfg   defined by    pafg   and 

   qbfg   is not an IF contra 
 G continuous mapping since 

   qpqpzG 2.0,2.0,8.0,5.0,4   is an IFOS in Z but 

      babaxGgf 2.0,2.0,8.0,5.0,4
11   is not an IF

 GCS in X as 

   24
11 GGgf   but          4

11
4

1 intint GgfclGfclcl     

.1 2~ G  

Theorem 3.29. For a mapping    ,,,:  YXf  where X is an 
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IF 21T  space, the following are equivalent: 

(i) f is an IF contra  G continuous mapping 

(ii) For every IFCS A in Y and for every IFP   ,, Xp   if     Apf q,  

then     Afp
q

1
, int 
    

(iii) For every IFCS in Y and for any IFP   ,, Xp   if     Apf q,  then 

there exists an IF  GOS B such that     Bpf q,  and   .ABf    

Proof. (i)  (ii) Let f be an IF contra   continuous mapping. Let YA   

be an IFCS and let   ., Xp   Also let     Apf q,  then    .1
, Afp q


  By 

hypothesis  Af 1  is an IF  GOS in X. Since X is an IF 21T  space,  Af 1  

is an IFOS in X. Hence     .int 11 AfAf    This implies 

    .int 1
, Afp q


   

(ii)  (i) Let YA   be an IFCS then  Af 1  is an IFS in X. Let 

  Xp ,  and let     Apf q,  then    .1
, Afp q


  By hypothesis this 

implies     .int 1
, Afp

q


   That is     .int 11 AfAf    But 

    .int 11 AfAf    Therefore     .int 11 AfAf    Thus  Af 1  is an 

IFOS in X and hence an IF
 GOS in X [7]. This implies f is an IF contra 

 G 

continuous mapping. 

(ii)  (iii) Let YA   be an IFCS then  Af 1  is an IFS in X. Let 

  ., Xp   Also let     Apf q,  then    .1
, Afp q


  By hypothesis this 

implies     .int 1
, Afp

q


   That is     .int 11 AfAf    But 

    .int 11 AfAf    Therefore     .int 11 AfAf    Thus  Af 1  is an 

IFOS in X and hence an IF
 GOS in X [7]. Let   .1 BAf   Therefore 

  Bp q,  and      .1 AAffBf    
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(iii)  (ii) Let YA   be an IFCS then  Af 1  is an IFS in X. Let 

  ., Xp   Also let     Apf q,  then    .1
, Afp q


  By hypothesis there 

exists an IF  GOS B in X such that     Bpf q,  and   .ABf   Let 

 .1 AfB   Since X is an IF 21T  space,  Af 1  is an IFOS in X and 

    .int 11 AfAf    Therefore     .int 1
, Afp

q


   

Theorem 3.30. A mapping     ,,: YXf  is an IF contra  G 

continuous mapping if      BfBclf 11 int    for every IFS B in Y. 

Proof. Let YB   be an IFCS. Then   .BBcl   Since every IFCS is an 

IFCS,   .BBcl  . Now by hypothesis,        BfBclfBf 111 int    

 .1 Bf   This implies     .int 11 BfBf    Therefore  Bf 1  is an IFOS in 

X. Hence f is an an IF contra continuous mapping. Then by Theorem 3.3, f is 

an IF contra  G continuous mapping. 

Theorem 3.31. A mapping     ,,: YXf  is an IF contra  G 

continuous mapping, where X is an IF 21T  space if and only if  

      BclfBclf 11 int    for every IFS B in Y. 

Proof. Necessity: Let YB   be an IFS. Then  Bcl  is an IFCS in Y. By 

hypothesis,   Bclf 1  is an IF
 GOS in X. Since X is an IF 21T  space, 

  Bclf 1  is an IFOS in X. Therefore       BclfBclf 11 int    

   .int 1 Bclf    

Sufficiency. Let YB   be an IFCS. Then   .BBcl   By hypothesis, 

          .intint 111 BclfBclfBclf    Since every IFCS is an 

IFCS, B is an IFCS. So   .BBcl   Therefore     BclfBf   11  

    .int 11 BfBf    This implies  Bf 1  is an IFOS in X and hence an 

IF
 GOS in X. Hence f is an IF contra 

 G continuous mapping. 
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