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Abstract 

The aim of this paper to prove a common fixed point theorem for two compatible maps in 

generalized -fuzzy metric spaces. The fundamental outcome is likewise outlined by a guide to 

exhibit the level of legitimacy of our speculation.  

1. Introduction 

Mustafa and Sims [8] brought the however of the thought of G-metric 

spaces as a speculation of metric spaces. Besides, Sedghi et al. [9] presented 

the idea of S-metric spaces as one of the speculations of the metric spaces. 

Abbas et al. [2] broadened the thought of S-metric spaces to A-metric space by 

stretching out the definition to n-tuple. In 1965, Zadeh [13] at first presented 

the idea of fuzzy sets. From that point forward, a few powerful 

mathematicians thought about the idea of fuzzy sets to present many 
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energizing ideas in the field of science, like fuzzy differential equations, fuzzy 

logic and fuzzy metric spaces. A fuzzy metric space is notable to be a 

significant speculation of the metric space. In 1975, kramosil and Michalek 

[7] utilized the idea of fuzzy sets to present the thought of fuzzy metric 

spaces. George and Veeramani [3] modified the idea of fuzzy metric spaces in 

the feeling of Kramosil and Michalek [7]. Sun and Yang [11] begat the 

possibility of G-fuzzy metric spaces. Vishal Gupta and Ashima Kanwar [12] 

introduce the -fuzzy metric space. In 1986, Jungck [6] introduced the 

concept of compatible maps in metric spaces. We prove common fixed point 

theorem for w-compatible in -fuzzy metric spaces.  

2. Preliminaries 

Definition 2.1 [10]. A binary operation      1,01,01,0:    is 

continuous t-norm if  is satisfying the following conditions:  

(i)  is commutative and associative,  

(ii)  is continuous,  

(iii) aa 1  for all  ,1,0a   

(iv) dcba   whenever ca   and ,db   and  .1,0,,, dcba   

Definition 2.2 [12]. Consider X be a non empty set. A triple  ,, X   is 

said to be -Fuzzy Metric Spaces  FMS  where  is a continuous norm 

and  is a fuzzy set on   ,0nX  satisfying the following conditions for all 

.0, st   

(V-1)   0,,,, tuvvv   for all Xuv,  with ,uv   

(V-2)    tvvvvtvvvv nn ,,,,,,,,,, 1212111     for all  ,,, 21 vv  

X nn vv ,1  with ,32 nvvv     

(V-3)   ,1,,,,, 21121 nnn vvvtvvvv     

(V-4)      tvvvvptvvvv nnnn ,,,,,,,,,, 121121      where p is a 

permutation function,  
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(V-5)    tvvvvstvvvv nnnn ,,,,,,,,,,, 121121       

 ,,,,,, svn  

(V-6)   ,1,,,,,lim 121  tvvvv nnt    

(V-7)      1,0,0:,,,,, 121  nn vvvv   is continuous.  

Example 2.3. Consider X  and  ,X  be a  metric spaces. Define 

   1,0,0: nX  such that  

 
 

t

vvvv

nn

nn

etvvvv

,,,,

121

121

,,,,,


 







  

for all X nn vvvv ,,,, 121   and .0t  Then  ,, X  is a .FMS  

Lemma 2.4 [12]. Consider  ,, X  be a .FMS  Then 

 tvvvv nn ,,,,, 121   is non-decreasing with respect to t.  

Lemma 2.5 [12]. Consider  ,, X  be a FMS  such that  

   tvvvvktvvvv nnnn ,,,,,,,,,, 121121      

with  .1,0k  Then .21 nvvv     

Definition 2.6 [12]. Consider  ,, X  be a .FMS  

(i) A sequence  mv  is said to be convergent to v if  

  .1,,,,,lim 


tvvvv mmm
m

  

(ii) A sequence  mv  is said to be a Cauchy sequence if  

  .1,,,,,lim
,




tvvvv nmmm
nm

  

(iii)  ,, X  is said to be complete if every Cauchy sequence in X is 

convergent.  

Definition 2.7 [12]. Let  and  be two self maps on a 

 .,,   XFMS  If  
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  1,,,,,lim 


tvvvv mmmm
m

   

where  mv  is a sequence in X which satisfies xvv m
m

m
m



 limlim  for 

some point Xx  and ,0t  the maps  and  are said to be w-compatible.  

3. Main Results 

Theorem 3.1. Let  ,, X  be a complete .FMS  Let  and  be two 

self maps from X into itself such that  

   XX      (3.1.1) 

 and  is continuous  (3.1.2) 

   tvvvvtvvvv nnnn ,,,,,,,,,, 121121      for 

each X nn vvvv ,,,, 121   and 10    (3.1.3) 

 and  are w-compatible maps.  (3.1.4) 

Then,  and  have a unique common fixed point in X.  

Proof. Let 0v  be an arbitrary point in X. Choose a point X1v  such that 

10 vv    with    .XX    Construct a sequence  hv  in X as follows:  

,1,0,1   hvvu hhh   

From (3.1.3), we have  

  









 
t

vvvvtvvvv hhhhhhhh ,,,,,,,,,, 11    











 
t

vvvv hhhh ,,,,, 111    













  2111 ,,,,,

t
vvvv hhhh    













  2222 ,,,,,

t
vvvv hhhh    
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  

  











 hhhhh

t
vvvvtvvvv ,,,,,,,,,, 10001    (3.1.5)  

For any 
m

t

m

t

m

t
tm  ,  and using (V-5) frequently many 

times,  

 tvvvv mhhhh ,,,,,    

 







 
  m

tm

m

t
vvvv mhhhh

1
,,,,,    








  m

t
vvvv hhhh ,,,,, 1   

 







 
  m

tm
vvvv mhhhh

1
,,,,, 111    








  m

t
vvvv hhhh ,,,,, 1   

 







 
  m

tm

m

t
vvvv mhhhh

2
,,,,, 111    

 







 
  m

tm
vvvv mhhhh

2
,,,,, 222    

  















  m

t
vvvv

m

t
vvvv hhhhhhhh ,,,,,,,,,, 21111    

.,,,, 111 






  m

t
vvvv mhmhmhmh    

Using (3.1.5) we obtain,  

 tvvvv mhhhh ,,,,,    




























 m

t
vvvv

m

t
vvvv

hh 110001000 ,,,,,,,,,,    
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.,,,,,
11000 














 m

t
vvvv

mh
   

Taking limit as ,, mh  on both side 

  .1111,,,,,lim
,




 tvvvv mhhhh
mh

  

Thus,  hv  is a Cauchy sequence in X. Since  ,, X  is complete 

,FMS  it has a limit in X such that  

.limlimlim 1 z 


h
h

h
h

h
h

vvu   

Since the maps  and  is continuous (assume that  is continuous), 

.lim z  hh v  Further, the maps  and  are w-compatible,  

  1,,,,,lim  tvPvvv hhhhh    

Implies .lim z  hh v   From (3.1.3), we have 

   tvvvvt hhhh  ,,,,,,,,,,   zzzz  

 .,,,,, tvvv hhh z   

Proceeding limit as ,h  we have .zz   Again by (3.1.1), we obtain  

   tvvvtvvv hhhhhh ,,,,,,,,,, zz     

and taking limit as ,h  we have .zz   Hence, zzz    and z is a 

common fixed point of  and . Eventually, the uniqueness of z as the 

common fixe point of  and  as follows:  

Suppose that  zz  be another common fixed point of  and . Then  

    










t

ztztz ,,,,,,,,,,,,,,,  zzzzzzzzz   












t

z,,,, zzz   

for ,10   so this is a contraction. Therefore, .zz  Hence, the common 
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fixed point of  and  is unique.  

Example 3.2. Let  1,1X  with  tvvvv nn ,,,,, 121   

 
.

,,,, 121 nn vvvvt

t





 Clearly,  ,, X  is a complete .FMS  Let 

 and  be maps from X into itself defined as  
6

v
v   and  

6

v
v   for all 

.Xv  Then,  

   XX  












4

1
,

4

1

6

1
,

6

1
 

and the maps  ,  are continuous. Also,  

   tvvvvtvvvv nnnn ,,,,,,,,,, 121121      

satisfies for all X nn vvvv ,,, 121  and .1
6

4
  Also, the maps  and  

are w-compatible since  

  1,,,,,lim 


tvvvv hhhh
h

   

where  
h

vh
1

  is a sequence for ,2,1h  in X such that  

0
6

1
limlim 

 h
v

h
h

h
  

and  

0
6

1
limlim 

 h
v

h
h

h
  

for .0 X  Thus, 0 is the unique common fixed point of  and .  

Conclusion 

In this paper, verified the existence of unique common fixed point for w-

compatible maps in FMS  with suitable example.  
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