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Abstract 

This research employs delay differential equations (DDEs) to investigate the impact of 

precautionary measures on the dynamics of COVID-19. A compartmental model QRSELL A  is 

developed, considering a time delay parameter  to account for delays caused by preventative 

measures. Stability analysis reveals the Disease-Free Equilibrium (DFE) stability for 10 R  

and Endemic Equilibrium (EE) stability for 10 R  with .0  Sensitivity analysis highlights 

the significance of parameters  and  in controlling disease transmission. Numerical 

simulations illustrate the effects of increasing , showing initial decreases in susceptible 

individuals and increases in exposed and asymptomatic infected individuals. Oscillatory 

behaviour is observed during the initial phase. Understanding  informs the optimal timing of 

interventions and response strategies for controlling COVID-19. 

1. Introduction 

The unprecedented global health crisis posed by the COVID-19 pandemic 

demands swift and effective strategies to mitigate its impact. Mathematical 

modelling has emerged as a powerful tool for understanding and predicting 

the dynamics of infectious diseases, offering valuable insights into 
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transmission modes, vaccination effects, and the efficacy of intervention 

strategies. In India, a country with a sizable population and unique 

demographic characteristics, the use of mathematical modelling is crucial for 

guiding evidence-based decision-making to address COVID-19 effectively. 

The inception of mathematical modelling in epidemiology dates back to 

Daniel Bernoulli’s work on the effect of variolation against smallpox, which 

highlighted the potential to increase life expectancy [1]. Since then, 

pioneering work by Kermack and McKendrick laid the foundation for 

applying mathematical models to comprehend infectious disease dynamics 

[2]. In the context of COVID-19, numerous mathematical models have been 

developed to study transmission dynamics in India. Studies have extended 

classical models like SI [3], SIS [4], and SIR [5], introducing additional 

compartments to account for asymptomatic cases, isolated individuals, 

quarantine, protection, deaths, lockdowns, hospitalizations, and more [6-12]. 

The COVID-19 epidemic has damaged beyond repair society at large, 

prompting the development of a number of preventative measures to slow its 

rapid spread. While lockdowns, social isolation, and other treatments have all 

been successful, they also slow the coronavirus’s ability to spread. For 

effective pandemic response measures to be developed, it is essential to 

comprehend the effects of these delays. In this research, we explore the field 

of mathematical modelling and use Delay Differential Equations (DDEs) to 

investigate the impact of delays brought on by preventative measures on the 

dynamics of COVID-19. Although several studies have used delay settings, 

the impact of this parameter on COVID-19 has not been extensively studied 

[13-17]. 

Delay Differential Equations (DDEs) are a powerful mathematical tool 

that has gained significant importance in various fields of science and 

engineering. Unlike ordinary differential equations (ODEs), which describe 

the rate of change of a system with respect to the current time, DDEs account 

for the influence of past states on the current state. This consideration of 

delays is particularly pertinent in epidemiology, where the time lag between 

exposure, infection, and transmission plays a crucial role in disease dynamics 

[18-21]. DDEs have been extensively used to model infectious diseases, 

providing valuable insights into the impact of time delays on disease spread 

and control strategies. 
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A Delay Differential Equation (DDE) is a type of differential equation 

where the current time derivatives of certain unknown functions depend on 

the values of these functions at previous points in time. In other words, the 

evolution of the system at the present moment is influenced not only by its 

current state but also by its past states. 

The general form of a DDE can be represented as follows: 

 
     txtxtf

td

tdx
,,  

where 

    txtx  :  

gives the trajectory of the solution in the past. Here, the function f is a 

functional operator from 1XCX n  to n  and   ntx   [22]. 

As a consequence of enforcing diverse precautionary measures, such as 

social distancing, self-isolation, practicing personal hygiene, mask-wearing, 

and widespread media awareness, a delay is anticipated in the time it takes 

for each susceptible individual to be exposed and potentially infected. In our 

study, we incorporate the notion of time delay by introducing the parameter 

, which represents the extent of this delay in the susceptibility of individuals 

to exposure and potential infection. This parameter accounts for the temporal 

gap resulting from precautionary measures, effectively postponing the 

transmission of the disease from infected to susceptible individuals. 

2. Model Formulation 

We create a deterministic compartmental model QRSEII A  to describe 

the disease transmission mechanism. Let N be the total population of 

humans. The total population N is divided into six compartments: Susceptible 

(S), Exposed (E), Symptomatic Infection (I), Asymptomatic Infection (IA), 

Quarantine (Q) and individuals that are either recovered or die from COVID-

19(R). We also include Vital Dynamics: The natural human natality or 

recruitment rate denoted by  and mortality (death) rate denoted by . The 

schematic diagram is shown in Figure 1. 
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  ,SAIS
dt

dS
A   

  ,EEIIS
dt

dE
A   

  ,1 IIEp
dt

dI
  

,2 AA
A IIEp

dt

dI
   

QQEp
dt

dQ
 3  

,RQII
dt

dR
A    (1) 

with nonnegative initial conditions given by 

          .00,00,0,00,00,00  RQIIES A  

All the parameters of the system 1 are assumed to be positive for all time 

.0t  

Due to the implementation of various precautionary measures, like social 

distancing, self-isolation, personal hygiene, wearing masks, media awareness, 

etc. We assume that there will be some delay in the time taken by each 

susceptible person to be exposed and likely infected. We introduce the concept 

of time delay and use parameter  which takes into account this delay in the 

delaying of susceptibility to be exposed and likely infected due to measure;  

is the time delay due to delaying in the transmission of the disease from 

infected to susceptible due to precautionary measures. 

 

Figure 1. Schematic Diagram of .QRSELLA  
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  ,SSItSI
dt

dS
A   

  ,EESItSI
dt

dE
A   

  ,1 IIEp
dt

dI
  

,2 AA
A IIEp

dt

dI
   

QQEp
dt

dQ
 3  

,RQII
dt

dR
A    (2) 

Consider the initial conditions for system 2 are of the form: 

                  QfIfIfEfS A ,,,, 4321  

     ., 65  fRf  

where     ,,0, 6
 RCfi  which is a Banach space of continuous functions 

from  0,  into ,6
  such that, 0f  for  ,0,  and 

  .7,6,5,4,3,2,1,00  ifi  Table 1 briefly describes all the parameters 

of the model. 

3. Dynamics of Non-Delayed System 1 

3.1 Positivity of Solutions 

For the COVID-19 model system 1 to be epidemiologically realistic, it is 

necessary to prove that all the state variables remain positive for all time. 
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Table 1. Parameter Description. 

Parameter Description Values 

 Birth rate 52000 

 Death rate 0.0245 

 Rate of transmission 1.7399 

 Rate of transition from Exposed to I,IA 

and Q 

0.1923 

1p  Fraction of population moves from 

Exposed to symptomatic class 

0.3362 

2p  Fraction of population moves from 

Exposed to asymptomatic class 

0.4204 

3p  Fraction of population moves from 

Exposed to quarantine class 

0.2434 

 Recovery rate of symptomatic infected 

class 

0.07 day-1 

  Recovery rate of asymptomatic infection 0.9 day-1 

 Recovery rate of quarantine class 0.9 day-1 

 Rate of disease-induced death 0.0001 day-1 

Theorem 1. Let the initial data be    .0,,,,, RQIIES A  Then the 

solution set             tRtQtItItEtS A ,,,,,  of the model system is non 

negative for all time t. 

Proof. Considering the non-linear system of the model 1, we take the 

first equation  

  ,SIIS
dt

dS
A   

    ,SIIS
dt

dS
A   

      ,dtIIS
S

dS
A  
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    ,ln ctIISS A   

   
,ctIIS

eeS A 


 

       
.0

tIIS AeStS


  

Similarly, it can also been shown that       ,0,0,,0  tQItItE A  

  0tR  for all .0t  Therefore, the disease is uniformly persistent for every 

positive solution.  

3.2 Invariant Region 

Theorem 2. For the initial conditions 2, the solutions of system 1 are 

contained in the region 6
   defined by  

               .:,,,,, 6










  tNRtRtQtItItEtS A  

Proof. Let RQIIESN A   

  IRQIIES
dt

dN
A   

IN
dt

dN
  

N
dt

dN
  

 N
dt

dN
 

   CeNe tt  

C
e

Ne
t

t 






  

.tCeN 



  

At .,



 Nt  Clearly  

               .:,,,,, 6










  tNRtRtQtItItEtS A  
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3.3 Analysis of Disease-Free Equilibrium (DFE) 0E  

The model gets DFE when the disease has zero induction  

Taking the first equation of system (1) with 0 RQIIE A  

into consideration, we arrive at  

.0 


S  

Then, the disease-free equilibrium (DFE) state 0E  is given by 

.0,0,0,0,0,0 








E  

4. Basic Reproductive Number 0R  

0R  refers to the average number of secondarily infected persons infected 

by one primary infected patient during the infectious period. To obtain the 

basic reproduction number, we used the next generation matrix method by 

Diekmann et al. and Dietz, where  is the matrix of the new infection terms 

and  is the matrix of the transition terms.  

At disease-free equilibrium 

    












 0,0,0,0,,0E  


































00000

00000

00000

00000

000

  

 

.

0

000

000

000

0000

3

2

1







































p

p

p
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 Now, 1  

           












































00000

00000

00000

00000

0021



PP

 

The basic Reproduction number is given by 

       
.21

0 










PP

R  

5. Stability Analysis of DFE 

5.1 Local Stability of Disease-free Equilibrium 

Theorem 3. The Disease Free Equilibrium DEF is locally asymptotically 

stable if .10 R  

Proof. The Jacobian matrix w.r.t. system 1 is given by 

 

 

 

 










































00

0000

0000

0000

000

000

3

2

1

00

00

p

p

p

SS

SS

J  

which implies 

.

00

00

00

0

43

32

21

001





























lp

lp

lp

SSl

JDFE  

Where, 

      .,,, 4321  llll   

Clearly, two eigenvalues of the matrix JDFE are negative such as - and -
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. The remaining eigenvalues are the roots of the following Polynomial 

equation  

001
2

2
3

3
4  aaaa  

where, 

   432143213 lllllllla   

     210
2
4

2
3

2
2

2
1

2
43212 22 ppSlllllllla   

0240140130224324314213211 SplSplSplSpllllllllllllla   

.143024243210 pllSplllllla   

According to the Routh-Hurwitz criterion, the above equation will give 

negative roots or roots with negative real parts if the following condition is 

satisfied: 

.0

0

1

0

,0
1

,0

13

02

13

2

13
3 

aa

aa

aa

a

aa
a  

Hence, the disease-free equilibrium point 0E  of the system is locally 

asymptotically stable, when .10 R   

5.2 Global Stability of Disease-free Equilibrium 

We now study the global stability of disease-free equilibrium, using the 

theorem by Castillo-Chavez et al. [23] 

Theorem 4. If the given mathematical model can be written in the form: 

 YXF
dt

dX
,  

    0,,,  YXGYXG
dt

dY
 (3) 

where   ,,,,,,
T

A
T RQIIEYSX   denoting the number of uninfected 

individuals and denoting the number of COVID-19-infected people 

respectively. Let the disease free equilibrium of this system be 
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  










  0,0,0 XU  

where 0 is a zero vector. 

For the global asymptotically stable, the following condition (H1) and 

(H2) must be satisfied. 

(H1): For   0,0,XF
dt

dX
  is global asymptotically stable. 

(H2):       0,ˆ,,ˆ,  YXGYXGAYYXG  for   YX ,  

where  0, XGDA Y  is an M-matrix (the off-diagonal elements of A are 

nonnegative) and  is the region where the model makes biological sense. If 

the given system of differential equations of our model satisfies the given 

condition in (2) then the fixed point  0,0
 XU  is a global asymptotically 

stable (g.a.s) equilibrium of (2) provided ,10 R  and the assumption (H1) 

and (H2) are satisfied. 

Theorem 5. (global asymptotic stability of DFE) The DFE 0E  of model 1 

is global asymptotically stable if .10 R  

Proof. First, we rewrite the system of differential equation of our model 1 

as STX   and   .,,,,
T

A RQIIEY   

Then, the DFE is given by 

  










  0,0,0 XU  

and the system  0,XF
dt

dX
  becomes 

.SS   

This equation has a unique equilibrium point 












 0,X   (4) 

which is globally asymptotically stable. Therefore, condition (H1) is satisfied. 
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We now verify the second condition (H2). For model 1, we have 

 

   

 

 




























RQII

QEp

IEp

IEEpEIIS

YXG

A

A

A





3

2

1

,  

  VFAXGDY  0,  

 

 

 

 







































00

000

000

000

00

3

2

1

00

p

p

p

SS

 

Clearly, we see that A is an M-matrix, i.e. all the off-diagonal elements of 

A are non-negative. 

   

    





















 



0

0

0

0

,,ˆ

0SSII

YXGAYYXG

A

 

for all   0,ˆ YXG  for all   ., YX  Therefore, conditions ( H1) and (H2) 

are satisfied. Hence, disease-free equilibrium is globally asymptotically 

stable. 

6. Stability Analysis of EE 

6.1 Existence of Endemic Equilibrium point 

Let us denote the Endemic Equilibrium by   RIIEVSE A ,,,,,1  



























E
pp

S
12



 







 Ep

I 1  
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








Ep

IA
2  







 Ep

Q 3  
























E

p
pfrac

p

R

3
2

1 

 

where  

.12

















pp
A


  

6.2 Local stability of endemic equilibrium 

Theorem 6. The endemic equilibrium 1E  is locally asymptotically stable 

if ,10 R  otherwise it is unstable. 

Proof. The Jacobian matrix of the system 1 at endemic equilibrium point 

1E  is obtained as follows: 













































u

up

tp

sp

SSra

SSq

JE

00

0000

0000

0000

00

000

3

2

1

21

1  

where            tsrIIq A ,,,   

   ., 21
  AIIau  Clearly, one eigenvalue of the matrix 1EJ  

is negative - and the remaining eigenvalues are the roots of the following 

Polynomial equation: 

001
2

1
2

2
3

3
4

4
5  cccccc  

where 

 utsrqc 4  
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     21
222222

3 22 ppSutsrqutsrqc    

         uqaSrqtuutrsqsutsqrc  
212  

   2121 tpsppp   

       2121211 ppquuasaSrstusrqtuutqrsc    

   2121 upspStpspS    

         uqaSrqtuutrsqsutsqrc  
210  

   2121 tpsppp   

According to the Routh-Hurwitz criterion, the above equation will give 

negative roots or negative real parts if the following condition is satisfied: 

0

10

0

01

0

,0

0

1,0
1

,0

13

024

13

024

24

13

024

3

24
4 

cc

ccc

cc

ccc

aa

cc

ccc

c

cc
c  

Hence, the endemic equilibrium point 1E  of the system is locally 

asymptotically stable when .10 R  

7. Dynamic with Delay 2 

The Positivity of the system 2 can be proved in a similar way as 

[24] and the boundedness of system 2 can be proved in a similar way as in 

Section 3.2. 

7.1 Equilibrium points and their stability 

As mentioned by Tipsri and Chinviriyasit [17], the equilibrium solutions 

are the same for the system with and without time delay. Therefore, to obtain 

the equilibrium points, we use .0  Hence, the Disease-Free and Endemic 

Equilibrium points of the system 2 are the same as obtained in section 3.3 

and 6.1 respectively. 
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7.2 Local stability of disease-free equilibrium point 

In this subsection, we will discuss the stability of the system 2 around a 

disease-free equilibrium point. For 0  

The Jacobian matrix w.r.t. system 2 is given by 

 

 

 

 

















































00

0000

0000

0000

000

000

3

2

1

00

00

p

p

p

SeS

SeS

J  

which implies 

.

00

00

00

0

43

32

21

001

































lp

lp

lp

SeSl

JDFE  

Where, 

      .,,, 4321  llll   

Clearly, two eigenvalues of the matrix JDFE are negative such as - and -

. The remaining eigenvalues are the roots of the following Polynomial 

equation. 

001
2

2
3

3
4  aaaa  (5) 

where, 

   432143213 lllllllla   

     210
2
4

2
3

2
2

2
1

2
43212 22 ppeSlllllllla    

0130224324314213211 SpleSplelllllllllllla    

024014 SplSpl   

.143024243210 pllSpllelllla    
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Ruan and Wei’s corollary 2.4 [25] states that for 0t  if instability arises 

for a specific value of the delay, a characteristic root of 5 must intersect the 

imaginary axis. 

The characteristic equation can also be written as 

      001
2

2
3

301
2

2
3

3
4   ccccebbbbf  (6) 

For ,0  (6) is a transcendental characteristic equation and the roots 

will be of the form,    ,taui  where .0  As explained by 

Mukandavire [26], the roots of a transcendental equation will have positive 

real parts if and only if it has purely imaginary roots. We will aim to obtain 

the conditions for which no such purely imaginary root exists for 6. These 

conditions will be then sufficient to conclude that all the roots of 6 have 

negative real parts. Consider,  0 i  is a purely imaginary root of 6. 

Then, 6 becomes 

     sincos01
2

2
3

3
4 ibibbib  

  .001
2

2
3

3  ciccic  

Separating real-imaginary parts, 

Real: 

        0sincos 1
3

30
2

20
2

2
4  ccccbb  

Complex: 

        0sincos 0
2

20
2

21
3

3  ccccbb  

Squaring both sides of the above two equations and adding we get, 

   231310
2
2

42
3

2
32

68 2222 cccbbbbcbb   

  .022 2
0

2
020

2
1

2
120

2  cbcccbbb  

Taking .2s  We have 

   231310
2
2

22
3

2
32

34 2222 cccbbbbscbbss   

    022 2
0

2
020

2
1

2
120  cbcccbbbs  (7) 
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if we assume that 

:2C  

  02 3
2
3

2
32  gcbb  

  0222 2231310
2
2  gcccbbbb  

  022 120
2
1

2
120  gcccbbb  

  00
2
0

2
0  gcb  

and  

0

0

1

0

,0
1

13

02

13

2

13


gg

gg

gg

g

gg
 

then by Routh-Hurwitz criterion the roots for (7) will have negative real 

parts. However, there does not exist  such that 2s  is negative. This 

poses a contradiction. 

Hence, whenever the conditions in (C2) are true, there does not exist a 

purely imaginary root of the transcendental equation (6). Hence, we have the 

following theorem. 

Theorem 7. Let, 10 R  then for ,0  the disease-free equilibrium point 

of system (2) is locally asymptotically stable if condition in  2C  is satisfied. 

Also, the disease-free equilibrium point of the system (2) is unstable for 

.00 R  

7.3 Local stability of endemic equilibrium point 

The Jacobian matrix of the system 1 at endemic equilibrium point 1E  is 

obtained as follows: 
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












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
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
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where    , 
AIeIq   ,r   ,s   , t  

   ., 21
  AIeIau  Clearly, one eigenvalue of the matrix 1EJ  

is negative - and the remaining eigenvalues are the roots of the following 

Polynomial equation: 

001
2

2
3

3
4

4
5  ccccc  

where 

 utsrqc 4  

     21
222222

3 22 ppeSutsrqutsrqc    

         uqaSrqtuutrsqsutsqrc  
212  

   2121 tpsppp   

       2121211 ppquuasaSrstusrqtuutqrsc    

   2121 upspeStpspS    

         uqaSrqtuutrsqsutsqrc  
210  

   2121 tpsppp   

For .0  The transcendental characteristic equation is given by 

  001
2

2
3

3
4

401
2

2
3

3
4

4
5   jjjjjefffff  (8) 

the roots will be of the form,    , i  where .0  As done 

previously for the local stability of ,0E  we will aim to obtain the conditions 

for which no purely imaginary root exists for equation (8). Let if possible, 

Equation (8) have a purely complex root of the form:  i  Then, (8) 

becomes: 

     sincos01
2

2
3

3
4

4
5 ififfiffi  

  001
2

2
3

3
4

4  jjjjj  

Separating real-imaginary parts: 
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Real: 

        jjjjjffF 3
30

2
2

4
40

2
2

4
4 sincos  

Complex: 

       .sincos 0
3

2
4

4
3

32
3

3
5 jjjjjff   

Squaring both sides of the above equations and adding we get 

00 5
2

4
4

3
6

2
8

1
1  vvvvv  (9) 

where, 
2
41

2
41 2 jffv   

jjfffv 41242 222   

04
42

21304
2
23 222 jjjfffffv   

023
2
2

2
1024 222 jjjjjfffv   

.2
0

2
05 jfv   

Put 2s  in (9) we get 

054
2

3
3

2
4

1
5  vsvsvsvsvs  

If we assume nH for ,5,4,3,2,1n  where for each nHn,  is a 

Hurwitz matrix of order ,nn   with general form: 

























00000

0

0

001

345

123

1









vvv

vvv

v

Hn  (10) 

with 0jv  if 5j  or .0j  According to the Routh-Hurwitz criterion, the 

roots of Equation (9) will exhibit negative real parts. Nevertheless, there is no 

value of  that can make the expression 2s  negative. This leads to a 

contradiction. Consequently, the conditions stated in (10) are enough to 

establish that all roots of Equation (8) hold negative real parts for .0  As a 

result, we can state the following theorem. 
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Theorem 8. Suppose 1E  is an endemic equilibrium point of the system 

(2), it will be locally asymptotically stable for 0  under the condition that 

each of the seven Hurwitz matrices defined as in (10) satisfies two criteria: 

1. The determinant of the matrix, denoted as ,nH  must be greater than 

zero (i.e., .0nH  

2. The basic reproduction number 0R  must be greater than 1 (i.e., 

.10 R  Otherwise unstable. 

8. Sensitivity Analysis 

In this section, we examine the impact of the parameters used to express 

the basic reproduction number, ,0R  through sensitivity analysis. 

This demonstrates that an alteration in these parameters results in an 

alteration in .0R  It is used to identify the variables with a significant impact 

on 0R  and determine which ones should be the focus of intervention 

measures. Sensitivity indices make it possible to quantify the proportional 

change in a variable when a parameter is altered. 

The forward sensitivity index of a variable, with regard to a specific 

parameter, is used for that 

0

00

R

RR 




  

where  .,,,,,,,, 21 PP  The analytical equation for the 

sensitivity of 0R  to each parameter it comprises can be calculated using the 

formula mentioned above. 

As a result, Figure 2 shows the sensitivity index of parameters i.e. 

21,,,,,,,, PP  respectively on .0R  

The positive indices indicate a direct relationship between the parameters 

and ,0R  that is if the parameter increases/decrease then the value of 0R  will 

increase/decrease. 

Therefore in order to control COVID-19 from the population, we need to 
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reduce the Basic Reproduction number, we can achieve this by reducing the 

parameters which give positive indices i.e. ,,,,,, 21  PPr  here birth rate  

and rate of transmission  are the most sensitive parameters of 0R  In light of 

the uncontrollable nature of the birth rate, our focus shifts to managing the 

rate of disease transmission. To achieve this, we must limit our contact rate 

through measures like quarantine and social distancing. By taking 

responsible actions and collectively embracing these precautions, we can 

build a shield of protection against infectious diseases, fostering a healthier 

and safer society. Also 10 
R

 means that if  increase by 1% than 0R  will 

also increase by 1%. 

The negative indices indicate that there is an inverse relationship 

between the parameters and ,0R  that is if the parameter decrease/increases 

then the value of 0R  will increase/decrease. ,,,   have negative indices, 

among the  is the highest sensitive if the death rate increase than 0R  

decrease. The strength of intervention h has negative indices which imply 

that if we implement strict intervention measures then 0R  will decrease 

which will lead to decreasing the Infected population. 

 

Figure 2. Forward sensitivity of 0R  

In Figure 3, we observe contour plots representing the relationship 

between the two parameters  and , and their corresponding values of .0R  

The contour plots reveal that 0R  exhibits an upward trend as  increases and 
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 decreases. As 0R  significantly influences the spread of the disease, it 

becomes crucial to understand how it depends on these distinct parameters. 

This knowledge empowers us to implement appropriate measures aimed at 

reducing ,0R  thereby effectively controlling the disease’s transmission. 

 

Figure 3. Contour plots of the basic reproduction number 0R  with respect to 

 and . 

9. Numerical Simulation 

For the Numerical Simulation of the proposed model, we illustrate the 

mathematical findings using the MATLAB program, the value of parameters 

are listed in the table. Figure 4 shows the Variation of QRSEII A  without 

time delay corresponding to the values of 10 R  for different values of initial 

numbers of each compartment with time 0t  to 100. Figure 5 shows the 

Variation of QRSEII A  without time delay corresponding to the values of 

10 R  for different values of initial numbers of each compartment with time 

0t  to 100. 

By altering the values of tau , the impact of the time delay is observed. 

In figures we see a simulation of a system showing a variation in population 

with the effect of time delay on QRSEII A  when .7,5,3,5.0  From this, 

we found out that if the time delay  increases, it means there is a longer 

delay between the time when an individual becomes exposed and the time 

they start infecting others. Various precautionary measures will delay the 

Susceptible from being Exposed and becoming infected. As  increases, the 
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number of susceptible individuals will decrease initially. This is because the 

infection will spread at a slower rate, and more people will move from the 

susceptible compartment to the exposed compartment due to the delay in 

transmission. 

 

Figure 4. Variation of QRSEII A  without time delay corresponding to the 

values of 10 R  for different values of initial numbers of each compartment 

with time 0t  to 100. 

 

Figure 5. Variation of QRSEII A  without time delay corresponding to the 

values of 10 R  for different values of initial numbers of each compartment 

with time 0t  to 100. 

The number of exposed individuals will increase with an increase in . 

This is because the longer time delay allows more individuals to stay in the 

exposed compartment before becoming infectious. As a result, the 

compartment of exposed individuals will grow larger. 
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Figure 6. Simulation of a system showing the variation of the population 

with the effect of time delay on QRSEII A  when .5.0  

 

Figure 7. Simulation of a system showing the variation of the population 

with the effect of time delay on QRSEII A  when .3  

The number of symptomatic infected individuals will decrease with an 

increase in . This is because there is a longer period for the infection to 

spread before individuals become symptomatic and move from the exposed 

compartment to the infected compartment. With a longer time delay in 

transmission, more individuals will move from the Exposed compartment to 

the Asymptomatic Infection compartment instead of becoming symptomatic 

and moving to the Symptomatic Infected compartment immediately. 
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Figure 8. Simulation of a system showing the variation of the population 

with the effect of time delay on QRSEII A  when .5  

 

Figure 9. Simulation of a system showing the variation of the population 

with the effect of time delay on QRSEII A  when .7  

The number of people in the Quarantined compartment is likely to 

initially rise as the time delay tau increases. This is because those in the 

quarantined compartment are those who have been exposed to the virus but 

are not yet infectious because of the quarantine and the prolonged 

transmission delay. Instead, they shift from the exposed compartment to the 

quarantined compartment. 

The number of recovered individuals will increase with an increase in . 

This is because the longer time delay allows more individuals to recover 

before becoming symptomatic and subsequently being quarantined or 

isolated.  
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In the initial phase, we see oscillatory behaviour, which arises due to the 

impact of precautionary measures like social distancing, self-isolation, and 

personal hygiene. These measures slow down the transmission of the disease, 

resulting in a longer time before an exposed individual becomes infected. As a 

result, the dynamics of the disease undergo oscillations, with periods of 

increasing and decreasing exposed individuals. Due to its influence on the 

effectiveness of disease control strategies. Our finding can help in setting the 

timing of control measures, as implementing interventions during periods of 

high transmission may have a more significant impact on disease control. It is 

possible to better prepare for and respond to outbreaks by anticipating their 

time and intensity. 

From Figure 10 we also see large oscillatory behaviour this is due to the 

high intensity of transmission as we increase . Oscillations can lead to 

fluctuations in the number of infectious individuals over time. Figure 11 

shows the effect of variations in Transmission Rate  on RSEII A  Model 

Dynamic. 

 

Figure 10. Variation of SEIIAQR with effect of time delay when 5 τ  = 5 

and higher values of . 

10. Conclusion 

In order to curb the COVID-19 diseases’ rapid spread, a number of 

preventative measures have been developed because the virus has 

irreparably affected society as a whole. Lockdowns, social exclusion, and 
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other therapies have all proved effective, but they also hinder the corona 

viruses capacity to propagate. It is crucial to appreciate the implications of 

these delays in order to create efficient pandemic response tactics. 

 

Figure 11. Effect of Variations in Transmission Rate  on QRSEII A  Model 

Dynamics.  

In this study, mathematical modelling is investigated, and delay 

differential equations (DDEs) are used to look into how delays caused by 

preventative measures affect the dynamics of COVID-19. 

We have developed a deterministic compartmental model, denoted as 

SEIIAQR, to characterize the mechanism of disease transmission. The total 

human population, denoted as N, is divided into six compartments: 

Susceptible (S), Exposed (E), Symptomatic Infection (I), Asymptomatic 

Infection (IA), Quarantine (Q), and individuals who have either recovered 

from or succumbed to COVID-19 (R). In light of various precautionary 

measures, such as social distancing, self-isolation, personal hygiene, mask-

wearing, and media awareness, we consider the presence of a delay in the 

time taken for susceptible individuals to be exposed and potentially infected. 

To account for this delay caused by precautionary measures, we introduce the 

parameter , representing the extent of the delay in susceptibility to exposure 
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and infection. In other words,  captures the time lag in disease transmission 

from infected to susceptible individuals due to the implementation of 

preventive interventions. 

First, we analyze the Dynamics of a non-delayed system 1, we explored 

the presence and stability of two critical points in the model: the Disease-Free 

Equilibrium (DFE) and the Endemic Equilibrium (EE). Through stability 

analysis, we determined that the DFE is locally asymptotically stable when 

the basic reproduction number, denoted as ,0R  is less than 1, and it becomes 

globally asymptotically stable under the same condition that is if .10 R  On 

the other hand, the EE is locally asymptotically stable when 0R  is greater 

than 1. 

Next we Dynamic with delay 2, for ,0  we derive the expression for 

Disease-Free Equilibrium (DFE) and the Endemic Equilibrium (EE). We 

provide stability criteria for both the Disease-Free Equilibrium (DFE) and the 

Endemic Equilibrium (EE). For ,10 R  the DFE of the system (2) is locally 

asymptotically stable when the condition in (C2) is satisfied and .0  

Conversely, the DFE is unstable for .10 R  

Moreover, for ,1E  an endemic equilibrium point of the system (2), it will 

be locally asymptotically stable with ,0  subject to two conditions being 

met for each of the seven Hurwitz matrices  nH  as defined in (10). The first 

condition requires the determinant of the matrix, represented as ,nH  to be 

greater than zero  .0nH  The second condition demands that the basic 

reproduction number, ,0R  must be greater than 1  .10 R  Failure to satisfy 

these criteria renders the EE unstable. These findings offer crucial insights 

into the stability properties of both equilibrium points, contributing to a 

deeper understanding of disease dynamics, especially considering time 

delays. 

We also investigate the impact of various parameters on the basic 

reproduction number, denoted as ,0R  through sensitivity analysis. By 

examining how changes in these parameters affect ,0R  we aim to identify 

key variables that significantly influence the transmission of COVID-19 and 
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should be targeted for intervention measures. The forward sensitivity index, 

denoted as ,0R
  is utilized to quantify the proportional change in R0 with 

respect to specific parameters, including ,,,,,,,, 1P  and .2P  The 

sensitivity indices reveal whether a parameter has a positive or negative 

relationship with ,0R  indicating whether an increase or decrease in the 

parameter will lead to a corresponding increase or decrease in .0R  Among 

the parameters with positive indices, , the rate of disease transmission, and 

, the birth rate, are the most sensitive to ,0R  suggesting that managing 

disease transmission and limiting contact rates through measures like 

quarantine and social distancing are crucial in controlling COVID-19. 

Conversely, parameters with negative indices, such as , the death rate, 

indicate an inverse relationship with ,0R  suggesting that increasing 

intervention measures can lead to a decrease in 0R  and the infected 

population. Contour plots illustrate the relationship between parameters  

and  and their corresponding values of ,0R  highlighting how 0R  varies with 

changes in these specific parameters and the potential impact on disease 

transmission. Understanding these dependencies empowers the 

implementation of targeted interventions aimed at reducing ,0R  thus 

effectively controlling the spread of COVID-19. 

In our numerical simulation of the proposed SEIIAQR model using 

MATLAB, we analyzed the impact of time delay  and illustrated the findings 

with Figures 4, 5, 6, 7, 8, and 9. As  increases, there is a longer delay 

between exposure and infection, caused by precautionary measures. The 

number of susceptible individuals initially decreases due to slower 

transmission, while the number of exposed individuals increases with more 

time for incubation. Symptomatic infected individuals decrease with 

increased , as the infection takes longer to develop symptoms. 

Moreover, the number of asymptomatic infected individuals rises due to 

the longer time delay in transmission, and more exposed individuals move to 

the asymptomatic compartment. The number of people in quarantine initially 

increases due to prolonged transmission delay, shifting from the exposed 

compartment. Additionally, the number of recovered individuals increases, as 

they have more time to recover before becoming symptomatic. 
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The model exhibits oscillatory behaviour during the initial phase, 

influenced by precautionary measures, leading to varying numbers of exposed 

individuals. Understanding the effects of  helps in setting optimal timing for 

control measures to combat disease transmission effectively. Anticipating 

outbreak timing and intensity aids in better preparation and response. 
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