
 

Advances and Applications in Mathematical Sciences 
Volume 23, Issue 4, February 2024, Pages 331-337 
© 2024 Mili Publications, India 

 

2020 Mathematics Subject Classification: 16N60, 16U80, 16W25, 16W10. 

Keywords: -ring, Generalized reverse   1, -derivation, Generalized reverse   1, -

biderivation, Symmetric generalized reverse   1, -biderivation. 

Received April 11, 2023; Accepted October 22, 2023 

SYMMETRIC GENERALIZED REVERSE 

  1, -BIDERIVATIONS IN -RINGS 

SK. HASEENA1 and C. JAYA SUBBA REDDY2 

1Research Scholar 

Department of Mathematics 

S. V. University, Tirupati-517502, A.P, India 

E-mail: skhaseena547@gmail.com 

2Department of Mathematics 

S. V. University, Tirupati-517502, A.P, India 

E-mail: cjsreddysvu@gmail.com 

Abstract 

Let R be a ring and  be the endomorphism of R. In this paper, we introduce the notions of 

generalized reverse   1, -derivation and symmetric generalized reverse   1, -biderivation. 

It is to show that if a semiprime ring admits a generalized reverse   1, -derivation with an 

associated reverse   1, -derivation d, then d maps R into  RZ  and also to show that if a non-

commutative prime ring admits a generalized reverse   1, -derivation F with an associated 

reverse   1, -derivation d, then F is right  -multiplier on R. Analogous results have been 

proved for symmetric generalized reverse   1, -biderivation.  

1. Introduction 

In [1] Bresar and Vukman proved that if a prime -ring R admits a          

-derivation (resp. Reverse -derivation) d, then either R is commutative or 

.0d  Ashraf Ali in [11] extended the above mentioned results for semiprime 

-rings in the setting of  , -derivations. Shakir Ali [12] proved that if a 
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semiprime -ring admits a generalized -derivation (resp. generalized reverse 

-derivation) F, then F maps R into  .RZ  Jaya Subba Reddy in [5] first 

introduced the concept of  1, -reverse derivations in rings and Generalized 

reverse  1, -derivations in rings [4]. He extended some results on 

Generalized  1, -reverse derivations in -prime rings [5], generalized 

biderivations [6] and Symmetric reverse  1, -biderivations in rings [7]. The 

concept of symmetric biderivations was introduced by Maksa [8, 9]. In [12] 

the notion of symmetric generalized -biderivation and symmetric 

generalized reverse -biderivation were defined. Recently, Ashraf Ali in [10] 

the notion of symmetric generalized reverse  , -derivation on the -ring 

,R -multiplier and  -bimultiplier were defined. The previous work on 

biderivation motivates us to define symmetric generalized reverse   1, -

biderivation on the -ring R. The aim of this paper is to introduce the concept 

of generalized reverse   1, -biderivation and symmetric generalized reverse 

  1, -biderivation, then obtain some results concerning commutativity of 

rings. 

2. Preliminaries 

Throughout this paper, R will represent an associative ring with      

center Z. A ring R is said to be prime if 0xRy  implies that either       

0x  or 0y  and semiprime if 0xRx  implies that ,0x  where 

.,, Ryx   The commutator   ., yxxyyx   Basic commutator identities 

     yzxzyxzxy ,,,   and      .,,, zxyzyxyzx   An additive mapping 

 xx  satisfying   
 xyxy  and   xx 

  for all ,, Ryx   is called an 

involution on R. A ring R equipped with an involution is called -ring or    

ring with involution. An additive mapping RRF :  is called a left                 

 -multiplier (resp. right  -multiplier) if       yxFxyF  (resp. 

     , xxFxyF  holds for all ., Ryx   An additive mapping RRd :  

is said to be a reverse derivation on R if d      .xydxydxyd   An additive 

mapping RRF :  is called a generalized reverse derivation if there exists 
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a derivation d such that      xydxyFxyF   holds for all ., Ryx   Let R 

be a semiprime ring and suppose  be the endomorphism of R. Following [7], 

an additive mapping RRF :  is called a generalized reverse  1, -

derivation if there exists a reverse  1, -derivation such that 

     xydyFxyF   holds for all ., Ryx   Thus, the concept of 

generalized reverse  1, -derivation covers the concepts of  1, -reverse 

derivation. Moreover, generalized reverse  1, -derivation with 0d  covers 

the concept of reverse left -multiplier. Now we extend the concepts of 

generalized reverse derivation in the following way: An additive mapping 

RRd :  is called reverse   1, -derivation if        xyxdxxdxyd    

holds for all ,, Ryx   where R is a ring with involution. An additive 

mapping RRF :  is called a generalized reverse   1, -derivation if 

there exists a derivation d such that        xydxxFxyF    holds for all 

., Ryx   A symmetric biadditive mapping RRRB :  is said to be a 

symmetric reverse biderivation on R if      xzyBzxyBzxyB ,,,   holds 

for all .,, Rzyx   A symmetric biadditive mapping RRRB :  is said 

to be a symmetric reverse  1, -biderivation on R if      xzyBzxyB  ,,  

 zxyB ,  holds for all .,, Rzyx   A symmetric biadditive mapping 

RRRG :  is said to be a symmetric generalized reverse biderivation B 

on R if      ,,,, zxyBzyGzxyG   for all .,, Rzyx   A symmetric 

biadditive mapping RRRG :  is said to be a symmetric generalized 

reverse  1, -biderivation on R if there exists a symmetric reverse  1, -

biderivation B on R such that      ,,,, zxyBzyGzxyG   for all 

.,, Rzyx   The previous work on reverse biderivations motivates us to 

define symmetric generalized reverse   1, -biderivation on the ring R. 

Reverse   1, biderivation on R if there exists a symmetric reverse   1, -

biderivation B on R such that        ,,,, zxyBxzyGzxyG    for all 

.,, Rzyx   
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3. Main Results 

Theorem 3.1. Let R be a semiprime -ring and  be the endomorphism of 

R. If RRF :  is a generalized reverse   1, -derivation with an 

associated reverse   1, -derivation d, then d maps R into  .RZ  

Proof. Given that        ,xydxxFxyF    for all ., Ryx   

Consider     zxyFxyzF    

         ,xzydxyzdxyzF    for .,, Rzyx    (3.1) 

On the other hand,     yzxFxyzF   

         ,xyzdxyzdxyzF    for all .,, Rzyx    (3.2) 

Comparing the equations (3.1) and (3.2), we obtain 

    ,0, xdzy  for all .,, Rzyx    (3.3) 

Replacing y by  yxd  in the equation (3.3) and using equation (3.3), we 

get 

     ,0, xydzxd  for all .,, Rzyx    (3.4) 

Substituting y by yz  in (3.4), we have      ,0, xyzdzxd  for all 

.,, Rzyx    (3.5) 

Now right multiplying equation (3.3) by z, we obtain that 

     .0, zxydzxd   (3.6) 

Comparing (3.5) and (3.6), we get       0,, zxdyzxd  and hence 

      ,0,, zxRRzxd  for all .,, Rzyx   

By the semiprimeness of R, we have    ,0, zxd  for all ., Ryx   

Hence, we conclude that d maps R into  .RZ  

Theorem 3.2. Let R be a non-commutative prime -ring and  be the 

endomorphism of R. If RRF :  is a generalized reverse   1, -derivation 
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with an associated reverse   1, - derivation d, then F is right  -multiplier 

on R. 

Proof. From equation (3.3) we can directly have     ,0, xdzy  for all 

.,, Rzyx   

Replacing y by ,ry  we get     ,0, xydzr  for all .,,, Rrzyx   

That is,     ,0, xRdzr  for all .,, Rrzx   

The primeness of R forces that either   0xd  or   ,0, zr  for all   

.,, Rrzx   

Since R is non-commutative ring, we conclude that   ,0xd  for all 

.Rx   

Hence F is left reverse  -multiplier on R. 

Theorem 3.3. Let R be a semiprime -ring and  be the endomorphism of 

R. If R admits a symmetric generalized reverse   1, -biderivation 

RRRG :  with a nonzero associated symmetric reverse   1, -

biderivation B, then G maps RR   into  .RZ  

Proof. Let G be a symmetric generalized reverse   1, -biderivation on R. 

We have        ,,,, zxyBxzyGzxyG    for all .,, Rzyx   

Replacing y by y in the above relation, we get 

          zxywBxzywGzywxGzxywG ,,,,    

         .,,, zxywBxzywBxyzwG    (3.7) 

On the other hand,     zwxyGzxywG ,  

         .,,, zxwyBxzywBxyzwG    (3.8) 

From equations (3.7) and (3.8), we get     ,0,, zxByw  for all 

.,,, Rwzyx   (3.9) 
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This equation is similar to equation (3.3), using the same technique as 

used in the proof of Theorem 3.1, we obtain the required result. 

Corollary 3.1. Let R be a semiprime -ring. If R admits a symmetric 

generalized reverse biderivation RRRG :  with an associated nonzero 

symmetric reverse biderivation ,: RRRB   then B maps RR   into 

 .RZ  

Theorem 3.4. Let R be a non-commutative prime -ring and  be the 

endomorphism of R. If R admits a symmetric generalized reverse   1, -

biderivation RRRG :  with an associated symmetric reverse   1, -

biderivation B, then .0B  

Proof. From equation (3.9), we can directly have     ,0,, zxByw  for all 

.,,, Rzyxw    

Replacing y by vy  in the last relation and using equation (3.9), we get 

    ,0,, zxyBvw  for all .,,,, Rzyxwv   The primeness of R forces that 

either   0, vw  or   0, zxB  for all .,,,, Rzyxwv   Since R is non-

commutative ring, we conclude that .0B  
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