BOUNDS ON THE COVERING RADIUS OF SIMPLEX CODE AND MACDONALD CODE IN \boldsymbol{R}

P. CHELLA PANDIAN
Department of Mathematics
Srimad Andavan Arts and Science College (A)
Tiruchirappalli-620005, Tamil Nadu, India
E-mail: chellapandianpc@gmail.com, chella@andavancollege.ac.in

Abstract

In this paper, the covering radius of codes over $R=\mathbb{Z}_{2} \mathbb{R}$, where $\mathbb{R}=\mathbb{Z}_{2}+v \mathbb{Z}_{2}, v^{2}=v$ with different weight are discussed. The block repetition codes over R is defined and the covering radius for block repetition codes, simplex code and macdonald code of type α and type β in R are obtained.

1. Introduction

Codes over finite commutative rings have been studied for almost 50 years. The main motivation of studying codes over rings is that they can be associated with codes over finite fields through the Gray map. Recently, coding theory over finite commutative non-chain rings is a hot research topic. Recently, there has been substantial interest in the class of additive codes. In [15, 16], Delsarte contributes to the algebraic theory of association scheme where the main idea is to characterize the subgroups of the underlying abelian group in a given association scheme. The covering radius is an important geometric parameter of codes. It not only indicates the maximum error correcting capability of codes, but also relates to some practical problems such as the data compression and transmission. Studying of the covering radius of codes has attracted many coding scientists for almost 30 years. The covering radius of linear codes over binary finite fields was studied in [13].

[^0]Additive codes over $\mathbb{Z}_{2} \mathbb{Z}_{4}$ have been extensively studied in [1, 3, 4, 5]. Enormous results were made available on the simplex codes over finite fields and finite rings. A few of them are $[6,8,9,19,21]$. In [7, 10, 11], the authors, in particular, gave lower and upper bounds on the covering radius of codes over the ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ where $u^{2}=0$ with respect to different distance and they explained the covering radius of various repetition codes, Simplex Codes and Macdonald Codes (Type α and Type β) The above results motivate us to work in this Paper.

2. Preliminaries

In \mathbb{Z}_{2} and $\mathbb{R}=\mathbb{Z}_{2}+v \mathbb{Z}_{2}, v^{2}=v$ be the rings of integers modulo 2 and let \mathbb{Z}_{n}^{2} and \mathbb{R}^{n} denote the space of n-tuples over these rings. A ring $R=\mathbb{Z}_{2} \mathbb{R}=\{00,01,0 v, 01+v, 10,11,1 v, 11+v\}$, where $\mathbb{R}=\{0,1, v, 1+v\}$, $v^{2}=v$ with integer modulo is 2 . If C be a non-empty subset C of \mathbb{Z}_{n}^{2} is called a code and if that subcode is a linear space, then C is said to be linear code.

In this section, some preliminary results are given [3, 5]. A non-empty set C is a Radditive code if it is a subgroup of $\mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta}$. In this case, C is also isomorphic to an abelian structure $\mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta}$ for some γ and δ and type of C is a $2^{\gamma} \mathbb{R}^{\mu}$ as a group. It pursue that it has $|C|=2^{\gamma+2 \delta}$ codewords and the number of order for two codewords in C is $|C|=2^{\gamma+\delta}$. The Gray map : $\mu: \mathbb{R} \rightarrow \mathbb{Z}_{2}^{2}$ is defined as $\mu(0)=(00), \mu(1)=(01), \mu(v)=(11)$ and $\mu(1+v)=(10)$ and the extension of the Gray map $\delta: \mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta} \rightarrow \mathbb{Z}_{n}^{2}$, $\delta(u, w)=\left(u, \mu\left(w_{1}\right), \ldots, \mu\left(w_{\delta}\right)\right), \forall u \in \mathbb{Z}_{2}^{\gamma} \quad$ and $\quad\left(w_{1}, \ldots, w_{\delta}\right) \in \mathbb{R}^{\delta}$, with $n=\gamma+2 \delta$. Then the binary image of a R-additive code under the extended Gray map is called a R-linear code of length $n=\gamma+2 \delta$. The Hamming weight of u denoted by $w_{H}(u)$ and $w_{L}(w)$ and $w_{E}(w)$ the Lee and Euclidean weights of w respectively, where $u \in \mathbb{Z}_{2}^{\gamma}$ and $w \in \mathbb{R}^{\delta}$ are defined as $w_{L}\left(x_{i}\right)=0$ if $x_{i}=0,1$ if $x_{i}=1,(1+v)$ and 2 if $x_{i}=v$ and $w_{E}\left(x_{i}\right)=0$ if $x_{i}=0,1$ if $x_{i}=1,(1+v)$ and 4 if $x_{i}=v$. The Lee weight and Euclidean
weight of x is defined as $w_{L}(x)=w_{H}(u)+w_{L}(w)$ and $w_{E}(x)$ $=w_{H}(u)+w_{E}(w)$, where $x=(u, w) \in \mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta}$, and $u=\left(u_{1}, \ldots, u_{\gamma}\right) \in \mathbb{Z}_{2}^{\gamma}$ and $w=\left(w_{1}, \ldots, w_{\delta}\right) \in \mathbb{R}^{\delta}$. The Gray map defined above is an isometry which transforms the Lee distance defined over $\mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta}$ to the Hamming distance defined over \mathbb{Z}_{n}^{2}, with $n=\gamma+2 \delta$. In [12], the Bachoc weight of x is defined as $w_{B}\left(x_{i}\right)=0$ if $x_{i}=0,1$ if $x_{i}=1$ and 2 if $x_{i}=v,(1+v)$.

Therefore, the Bachoc weight of x as $w t_{B}(x)=w t_{H}(u)+w t_{B}(w)$, where $x=(u, w) \in \mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta}$, and $u=\left(u_{1}, \ldots, u_{\gamma}\right) \in \mathbb{Z}_{2}^{\gamma}$ and $w=\left(w_{1}, \ldots, w_{\delta}\right) \in \mathbb{R}^{\delta}$. The Chinese Euclidean weight of x is given as $w t_{C E}\left(x_{i}\right)=0$ if $x_{i}=0,2$ if $x_{i}=1,(1+v)$ and 4 if $x_{i}=v$ [20]. Define, $w_{C E}(x)=w t_{H}(u)+w t_{C E}(w)$, where $\quad x=(u, w) \in \mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta} \quad$ and $\quad u=\left(u_{1}, \ldots, u_{\gamma}\right) \in \mathbb{Z}_{2}^{\gamma} \quad$ and $w=\left(w_{1}, \ldots, w_{\delta}\right) \in \mathbb{R}^{\delta}$. If $c_{1}, c_{2} \in C$, be any two distinct codewords of D distance is defined as $d_{D}(C)=\min \left\{d_{D}\left(c_{1}, c_{2}\right) \mid c_{1}-c_{2} \neq 0\right.$ and $\left.c_{1}, c_{2} \in C\right\}$. The minimum D weight of C is $d_{D}(C)=\min \left\{d_{D}\left(c_{1}, c_{2}\right) \mid c_{1}-c_{2} \neq 0\right.$ and $\left.c_{1}, c_{2} \in C\right\}$. In C is a linear code C, thus $d_{D}(C)=\min \left\{w_{D}(c) \mid c \neq 0 \in C\right\}$. Therefore, $d_{D}\left(c_{1}, c_{2}\right)=w_{D}\left(c_{1}, c_{2}\right)$. Let $C \subseteq R^{n}$ is a linear code, where n is a length of code, the number of codewords N and the minimum D distance d_{D} is said to be an (n, N, d_{D}) code in R, where $D=\{\operatorname{Lee}(L)$, Euclidean (E), Bachoc (B), Chinese Euclidean (CE)\}.

3. The Covering Radius of the Block Repetition Codes over \boldsymbol{R}

The covering radius of a code C is the smallest number r such that the spheres of radius r around the codewords cover $\mathbb{Z}_{2}^{\gamma} \times \mathbb{R}^{\delta}=R$ and thus the covering radius of a code C over R with respect to the different distance, such as (Lee, Euclidean, Bachoc, Chinese Euclidean) is given $r_{d}(C)=\max _{u \in R}\left\{\min _{c \in C} d(u, c)\right\}$.

In $F_{q}=\left\{0,1, \beta_{2}, \ldots, \beta_{q-1}\right\}$ is a finite field. Let C be a q-ary repetition
code C over F_{q}. That is $C=\left\{\bar{\beta}=(\beta \beta \ldots \beta) \mid \beta \in F_{q}\right\}$ and the repetition code C is an $[n, 1, n]$ code. Therefore, the covering radius of the code C is $\left\lceil\frac{n(q-1)}{q}\right\rceil$ this true for binary repetition code. In [7, 10, 11], the authors studied for different classes of repetition codes over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}, u^{2}=0$ and their covering radius has been obtained. Now, generalize those results for codes over $R=\mathbb{Z}_{2} \mathbb{R}, v^{2}=v$. Consider the repetition codes over R. For a fixed $1 \leq i \leq 7$. For all $1 \leq j \neq i \leq 7, n_{j}=0$, then the code $C^{n}=C^{n_{i}}$ is denoted by C_{i}. Therefore, the seven basic repetition codes are the following table,

Generator Matrix	Code	Parameters- $\left[n, k(N), d_{i}\left(d_{j}\right)\right]_{i, j}, D$
$G_{1}=\overbrace{[01 \ldots 01]}^{n_{1}(3)}=G_{3}$	$C_{1(3)}=\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}$	$\left(n_{1(3), 4, n, n, n, 2 n)}\right.$
$G_{2}=\overbrace{[0 v \ldots 0 v]}^{n_{2}}$	$C_{2}=\left\{c_{0}, c_{2}\right\}$	$\left(n_{1(3)}, 4, n, n, n, 2 n\right)$
$G_{4}=\overbrace{[10 \ldots 10]}^{n_{4}}$	$C_{4}=\left\{c_{0}, c_{4}\right\}$	$\left(n_{1(3)}, 4, n, n, n, 2 n\right)$
$G_{5}=\overbrace{[11 \ldots 11]}^{n_{5}(7)}=G_{7}$	$C_{5(7)}=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}$	$\left[n_{5(7), 8, n], d_{i}=n}\right.$

here $\quad c_{0}=(00 \ldots 00), c_{1}(01 \ldots 01), c_{2}=(0 v \ldots 0 v), c_{3}=(01+v \ldots 01+v)$, $c_{4}=(10 \ldots 10), c_{5}=(11 \ldots 11), c_{6}=(1 v \ldots 1 v), c_{7}=(11+v \ldots 11+v)$.

Theorem 3.1. Let $C_{j, 1 \leq j \leq 7}$, be a code in R. Then, $\frac{n}{2} \leq r_{L}\left(C_{1}\right)=r_{L}\left(C_{3}\right) \leq 2 n, \frac{n}{2} \leq r_{L}\left(C_{2}\right) \leq 2 n, \frac{n}{4} \leq r_{L}\left(C_{4}\right) \leq 2 n, \frac{3 n}{4} \leq r_{L}\left(C_{5}\right)$ $=r_{L}\left(C_{7}\right) \leq \frac{3 n}{2}, \frac{3 n}{4} \leq r_{L}\left(C_{6}\right) \leq \frac{3 n}{2}$, where $r_{L}\left(C_{j}\right)$ is a covering radius of $C_{j, 1 \leq j \leq 7}$ with Lee distance.

Proof. For $c \in C_{j, 1 \leq j \leq 7}$ be a codeword of code C_{j} in R. Let $t_{i}(c)_{0 \leq i \leq 7}$ is the number of occurrences of symbol i in the codeword c. Let $x \in R^{n}$ by
$\left(t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}\right), \quad$ where $\quad \sum_{j=0}^{7} t_{j}=n, \quad$ then $\quad d_{D}(x, \overline{00})$
$=n-t_{0}+t_{2}+t_{5}+2 t_{6}+t_{7}, d_{L}(x, \overline{01})=n-t_{1}+t_{3}+t_{4}+t_{6}+2 t_{7}, t_{7}$,
$d_{L}(x, \overline{0 v})=n-t_{2}+t_{0}+2 t_{4}+t_{5}+t_{7}, d_{L}(x, \overline{01+v})=n-t_{3}+t_{1}+t_{4}+2 t_{5}$
$+t_{6}, d_{L}(x, \overline{10})=n-t_{4}+t_{1}+2 t_{2}+t_{3}+t_{6}, d_{L}(x, \overline{11})=n-t_{5}+t_{0}+t_{2}+2 t_{3}$
$+t_{7}, d_{L}(x, \overline{1 v})=n-t_{6}+2 t_{0}+t_{1}+t_{3}+t_{4}, d_{L}(x, \overline{11+v})=n-t_{7}+t_{0}+2 t_{1}$
$+t_{2}+t_{5}$. In Code, $\quad C_{1}=C_{3} \in R$, therefore, $\quad d_{L}\left(x, C_{1}\right)=d_{L}\left(x, C_{3}\right)$
$=\min \left\{d_{L}(x, \overline{00}), d_{L}(x, \overline{01}), d_{L}(x, \overline{0 v}), d_{L}(x, \overline{01+v})\right\} \leq 2 n, \quad$ then $r_{L}\left(C_{1}\right)=r_{L}\left(C_{3}\right) \leq 2 n$.

If $x=\overbrace{00 \ldots 00}^{\frac{n}{4}} \overbrace{01 \ldots 01}^{\frac{n}{4}} \overbrace{0 v \ldots 0 v}^{\frac{n}{4}} \overbrace{01+v \ldots 01+v}^{\frac{n}{4}} \in R^{n}$, then $d_{L}(x, \overline{00})$ $=d_{L}(x, \overline{01})=d_{L}(x, \overline{0 v})=d_{L}(x, \overline{01+v})=\frac{n}{2}$. Thus $\quad r_{L}\left(C_{1}\right)=r_{L}\left(C_{3}\right) \geq \frac{n}{2}$ and \quad so $\quad \frac{n}{2} \leq r_{L}\left(C_{1}\right)=r_{L}\left(C_{3}\right) \leq 2 n . \quad$ In \quad Code, $\quad C_{2} \in R, d_{L}\left(x, C_{2}\right)$ $=\min \left\{d_{L}(x, \overline{00}), d_{L}(x, \overline{0 v})\right\} \leq 2 n . \quad$ Then $\quad r_{L}\left(C_{2}\right) \leq 2 n . \quad$ If $x=\overbrace{00 \ldots 00}^{\frac{n}{2}} \overbrace{0 v \ldots 0 v}^{\frac{n}{4}} \in R^{n}$, then $d_{L}(x, \overline{00})=d_{L}(x, \overline{0 v})=2\left(\frac{n}{4}\right)=\frac{n}{2}$. Thus $r_{L}\left(C_{2}\right) \leq \frac{n}{2}$ and so $\frac{n}{2} \leq r_{L}\left(C_{2}\right) \leq 2 n$. The remaining part of proof is follows from the code C_{1} and C_{2} for they Codes C_{4}, C_{5}, C_{6}.

Theorem 3.2. In Euclidean weight for the code $C_{j, 1 \leq j \leq 7}$, prove the $\frac{3 n}{4} \leq r_{E}\left(C_{1}\right)=r_{E}\left(C_{3}\right) \leq 2 n, n \leq r_{E}\left(C_{2}\right) \leq 3 n, \frac{n}{4} \leq r_{E}\left(C_{4}\right) \leq 4 n, n \leq r_{E}\left(C_{5}\right)$ $=r_{E}\left(C_{7}\right) \leq 2 n, \frac{5 n}{4} \leq r_{E}\left(C_{6}\right) \leq \frac{5 n}{2}$.

Proof. In Code $C_{i, i=1}$ to 7 with Euclidean weight is apply to theorem 3.1. \square
Theorem 3.3. Show that, $\frac{5 n}{8} \leq r_{B}\left(C_{1}\right)=r_{B}\left(C_{3}\right) \leq 2 n, \frac{n}{2} \leq r_{B}\left(C_{2}\right)$
$\leq 2 n, \frac{n}{4} \leq r_{B}\left(C_{4}\right) \leq \frac{5 n}{2}, \frac{7 n}{8} \leq r_{B}\left(C_{5}\right)=r_{B}\left(C_{7}\right) \leq \frac{7 n}{4} \quad$ and $\quad \frac{3 n}{4} \leq r_{B}\left(C_{6}\right)$ $\leq \frac{7 n}{2}$, here $r_{B}\left(C_{j}\right)$ be a covering radius of code $C_{j, 1 \leq j \leq 7}$ with Bachoc weight.

Proof. To apply theorem 3.1 for Code $C_{i, i=1 \text { to } 7}$ with Bachoc weight.
Theorem 3.4. In Chinese Euclidean weight of code of $C_{j, 1 \leq j \leq 7}$, to find $n \leq r_{C E}\left(C_{1}\right)=r_{C E}\left(C_{3}\right) \leq \frac{11 n}{4}, n \leq r_{C E}\left(C_{2}\right) \leq \frac{5 n}{2}, \frac{n}{4} \leq r_{C E}\left(C_{4}\right) \leq 4 n, \frac{5 n}{4}$ $\leq r_{C E}\left(C_{5}\right)=r_{C E}\left(C_{7}\right) \leq \frac{5 n}{2}$ and $\frac{5 n}{4} \leq r_{C E}\left(C_{6}\right) \leq \frac{5 n}{2}$.

Proof. In Code $C_{i, i=1 \text { to } 7}$ with Chinese Euclidean weight is apply to theorem 3.1.

Block repetition code in R

The block repetition code C^{n} over R is a R-additive code.

Let

$$
G=[\overbrace{01 \ldots 01}^{n_{1}} \overbrace{0 v \ldots 0 v}^{n_{2}} \overbrace{01+v \ldots 01+v}^{n_{3}} \overbrace{10 \ldots 10}^{n_{4}} \overbrace{11 \ldots 11}^{n_{5}} \overbrace{1 v \ldots 1 v}^{n_{6}}
$$

$\overbrace{11+v 1 \ldots 11+v 1}^{n_{1}}]$ be a generator matrix with the parameters of $C^{n}:\left[n=\sum_{j=1}^{7} n_{j}, 8, d_{L}=\min \left\{n_{4}+n_{5}+n_{6}+n_{7}, n_{1}+2 n_{2}+n_{3}+n_{5}+2 n_{6}\right.\right.$ $\left.+n_{7}\right\}, d_{E}=\min \left\{n_{4}+n_{5}+n_{6}+n_{7}, n_{1}+4 n_{2}+n_{3}+n_{5}+4 n_{6}+n_{7}\right\}, d_{B}=$ $\min \left\{n_{4}+n_{5}+n_{6}+n_{7}, n_{1}+2 n_{2}+2 n_{3}+n_{5}+2 n_{6}+2 n_{7}\right\}, d_{C E}=\min \left\{n_{4}+n_{5}\right.$ $\left.\left.\left.n_{6}+n_{7}\right)\right\}\right]$.

Theorem 3.5. Let C^{n} be the block repetition code in R with length is n. Then the covering radius of block repetition code is

1. $r_{L}\left(C^{7 n}\right)=2 n$, if $n_{1}=\ldots=n_{7}=n$.
2. $\frac{3\left(n_{1}+n_{3}\right)+n_{4}+4\left(n_{2}+n_{5}+n_{7}\right)+5 n_{6}}{4} \leq r_{E}\left(C^{n}\right)$
$\leq \frac{5\left(n_{1}+n_{3}+n_{6}\right)+3 n_{2}+9 n_{4}+4\left(n_{5}+n_{7}\right)}{2}$,
3. $\frac{5\left(n_{1}+n_{3}\right)+4 n_{2}+2 n_{4}+7\left(n_{5}+n_{7}\right)+6 n_{6}}{8} \leq r_{B}\left(C^{n}\right)$
$\leq \frac{18\left(n_{1}+n_{3}+n_{6}\right)+17 n_{2}+15\left(n_{4}+n_{5}+n_{6}+n_{7}\right)}{8}$ and
4. $\frac{4\left(n_{1}++n_{2}+n_{3}\right)+n_{4}+5\left(n_{5}+n_{6}+n_{7}\right)+6 n_{6}}{4} \leq r_{C E}\left(C^{n}\right)$
$\leq \frac{6\left(n_{1}+n_{2}+n_{3}\right)+8 n_{5}+5\left(n_{5}+n_{6}+n_{7}\right)}{2}$.
Proof. For the Code, that $\phi\left(C^{7 n}\right)$ is the set given by

$$
\begin{aligned}
& \{000 \ldots 000000 \ldots 000000 \ldots 000000 \ldots 000000 \ldots 000000 \ldots 000000 \ldots 000, \\
& 001 \ldots 001011 \ldots 011010 \ldots 010100 \ldots 100101 \ldots 101111 \ldots 111110 \ldots 110, \\
& 001 \ldots 001011 \ldots 011010 \ldots 010000 \ldots 000001 \ldots 001011 \ldots 011010 \ldots 010, \\
& 011 \ldots 011000 \ldots 000011 \ldots 011000 \ldots 000011 \ldots 011000 \ldots 000011 \ldots 011, \\
& 010 \ldots 010011 \ldots 011001 \ldots 001000 \ldots 000010 \ldots 010011 \ldots 011001 \ldots 001, \\
& 000 \ldots 000000 \ldots 000000 \ldots 000100 \ldots 100100 \ldots 100100 \ldots 100100 \ldots 100 \\
& 011 \ldots 011000 \ldots 000011 \ldots 011100 \ldots 100111 \ldots 111100 \ldots 100111 \ldots 111, \\
& 010 \ldots 010011 \ldots 011001 \ldots 001100 \ldots 100110 \ldots 110111 \ldots 111101 \ldots 101\}
\end{aligned}
$$

By Proposition [2], give $r_{L}\left(C^{7 n}\right)=r\left(\phi\left(C^{7 n}\right)\right)=2 n$. Using Proposition [13], Theorem 3.2, 3.3 and 3.4, thus

- $\frac{3\left(n_{1}+n_{3}\right)+n_{4}+4\left(n_{2}+n_{5}+n_{7}\right)+5 n_{6}}{4} \leq r_{E}\left(C^{n}\right)$,
- $\frac{5\left(n_{1}+n_{3}\right)+4 n_{2}+2 n_{4}+7\left(n_{5}+n_{7}\right)+6 n_{6}}{8} \leq r_{B}\left(C^{n}\right)$ and
- $\frac{4\left(n_{1}++n_{2}+n_{3}\right)+n_{4}+5\left(n_{5}+n_{6}+n_{7}\right)+6 n_{6}}{4} \leq r_{C E}\left(C^{n}\right)$.

Let $\quad x=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \in R^{n} \quad$ with $\quad x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \quad$ is $\left(a_{i}\right),\left(b_{i}\right),\left(c_{i}\right),\left(d_{i}\right),\left(e_{i}\right),\left(f_{i}\right),\left(g_{i}\right)_{i=0,1,2,3,4,5,6,7}$ respectively such that n_{1}
$=\sum_{j=0}^{7} a_{j}, n_{2}=\sum_{j=0}^{7} b_{j}, n_{3}=\sum_{j=0}^{7} c_{j}, n_{4}=\sum_{j=0}^{7} d_{j}, n_{5}=\sum_{j=0}^{7} e_{j}$,
$n_{6}=\sum_{j=0}^{7} f_{j}, n_{7}=\sum_{j=0}^{7} g_{j} . \quad$ Then $\quad d_{E}(x, \overline{y 0})=n_{1}-a_{0}+3 a_{2}+a_{5}+4 a_{6}$
$+a_{7}+n_{2}-b_{0}+3 b_{2}+b_{5}+4 b_{6}+b_{7}+n_{3}-c_{0}+3 c_{2}+c_{5}+4 c_{6}+c_{7}+n_{4}-d_{0}$
$+3 d_{2}+d_{5}+4 d_{6}+d_{7}+n_{5}-e_{0}+3 e_{2}+e_{5}+4 e_{6}+e_{7}+n_{6}-f_{0}+3 f_{2}+f_{5}+4 f_{6}$ $+f_{7}+n_{7}-g_{0}+3 g_{2}+g_{5}+4 g_{6}+g_{7}, \quad$ where $\overline{y 0}=\overbrace{00 \ldots 00}^{n_{1}} \overbrace{00 \ldots 00}^{n_{2}} \overbrace{00 \ldots 00}^{n_{3}}$ $\overbrace{00 \ldots 00}^{n_{4}} \overbrace{00 \ldots 00}^{n_{5}} \overbrace{00 \ldots 00}^{n_{6}} \overbrace{00 \ldots 00}^{n_{7}}$, is the first vector of C^{n}, where $n=n_{1}$.

$$
\begin{aligned}
& d_{E}\left(x, \overline{y_{1}}\right)=n_{1}-a_{1}+3 a_{3}+a_{4}+a_{6}+4 a_{7}+n_{2}-b_{2}+3 b_{0}+4 b_{4}+b_{5}+b_{7} \\
& +n_{3}-c_{3}+3 c_{1}+4 c_{5}+c_{6}+n_{4}-d_{4}+d_{1}+4 d_{2}+d_{3}+3 d_{6}+n_{5}-e_{5}+e_{0} \\
& +e_{2}+4 e_{3}+3 e_{7}+n_{6}-f_{6}+4 f_{0}+f_{1}+f_{3}+3 f_{4}+n_{7}-g_{7}+g_{0}+4 g_{1}+g_{2}+3 g_{5}, \\
& \text { where } \overline{y_{1}}=\overbrace{01 \ldots 01}^{n_{1}} \overbrace{0 v \ldots 0 v}^{n_{2}} \overbrace{01+v \ldots 01+v}^{n_{3}} \overbrace{10 \ldots 10}^{n_{4}} \overbrace{11 \ldots 11}^{n_{5}} \overbrace{1 v \ldots 1 v}^{n_{6}}
\end{aligned}
$$

$\overbrace{11+v \ldots 11+v}^{n_{7}}$, is the second vector of C^{n}, where $n=n_{2}$.

$$
\begin{aligned}
& \quad d_{E}\left(x, \overline{y_{2}}\right)=n_{1}-a_{1}+3 a_{3}+a_{4}+a_{6}+4 a_{7}+n_{2}-b_{2}+3 b_{0}+4 b_{4}+b_{5}+b_{7} \\
& +n_{3}-c_{3}+3 c_{1}+4 c_{5}+c_{6}+n_{4}-d_{0}+3 d_{2}+d_{5}+4 d_{6}+d_{7}+n_{5}-e_{1}+3 e_{3} \\
& +e_{4}+e_{6}+4 e_{7}+n_{6}-f_{2}+3 f_{0}+4 f_{4}+f_{5}+f_{7}+n_{7}-g_{3}+3 g_{1}+g_{4}+4 g_{5}+g_{6} \\
& \text { where } \quad \overline{y_{2}}=\overbrace{01 \ldots 01}^{n_{1}} \overbrace{0 v \ldots 0 v}^{n_{2}} \overbrace{01+v \ldots 01+v}^{n_{3}} \overbrace{00 \ldots 00}^{n_{4}} \overbrace{01 \ldots 01}^{n_{5}} \overbrace{0 v \ldots 0 v}^{n_{6}}
\end{aligned}
$$

$\overbrace{01+v \ldots 01+v}^{n_{7}}$, is the third vector of C^{n}, where $n=n_{3}$.

$$
\begin{aligned}
& \quad d_{E}\left(x, \overline{y_{3}}\right)=n_{1}-a_{2}+3 a_{0}+4 a_{4}+a_{5}+a_{7}+n_{2}-b_{0}+3 b_{2}+4 b_{6}+b_{5}+b_{7} \\
& +n_{3}-c_{2}+3 c_{0}+4 c_{4}+c_{5}+c_{7}+n_{4}-d_{0}+3 d_{2}+d_{5}+4 d_{6}+d_{7}+n_{5}-e_{2}+3 e_{0} \\
& +4 e_{4}+e_{5}+e_{7}+n_{6}-f_{0}+3 f_{2}+f_{5}+4 f_{6}+f_{7}+n_{7}-g_{2}+3 g_{0}+4 g_{4}+g_{5}
\end{aligned}
$$

$+g_{7}$, where $\overline{y_{3}}=\overbrace{0 v \ldots 0 v}^{n_{1}} \overbrace{00 \ldots 00}^{n_{2}} \overbrace{0 v \ldots 0 v}^{n_{3}} \overbrace{00 \ldots 00}^{n_{4}} \overbrace{0 v \ldots 0 v}^{n_{5}} \overbrace{00 \ldots 00}^{n_{6}} \overbrace{0 v \ldots 0 v}^{n_{7}}$ is the fourth vector of C^{n}, where $n=n_{4}$.

$$
\begin{aligned}
& d_{E}\left(x, \overline{y_{4}}\right)=n_{1}-a_{3}+3 a_{1}+a_{4}+4 a_{5}+a_{6}+a_{7}+n_{2}-b_{2}+3 b_{0}+4 b_{4} \\
& +b_{5}+b_{7}+n_{3}-c_{1}+3 c_{3}+c_{4}+c_{6}+4 c_{7}+n_{4}-d_{0}+3 d_{2}+d_{5}+4 d_{6}+d_{7}+n_{5} \\
& -e_{3}+3 e_{1}+e_{4}+4 e_{5}+e_{6}+n_{6}-f_{2}+3 f_{0}+4 f_{4}+f_{5}+f_{7}+n_{7}-g_{1}+3 g_{3}+g_{4} \\
& +g_{6}+4 g_{7}, \quad \overline{y_{4}}=\overbrace{01+v \ldots 01+v}^{n_{1}} \overbrace{0 v \ldots 0 v}^{n_{2}} \overbrace{01 \ldots 01}^{n_{01}} \overbrace{00 \ldots 00}^{n_{3}}
\end{aligned}
$$

$$
\overbrace{01+v \ldots 01+v}^{n_{5}} \overbrace{0 v \ldots 0 v}^{n_{6}} \overbrace{01+v \ldots 01+v}^{n_{7}} \text {, is the fifth vector of } C^{n} \text {, where }
$$

$$
n=n_{5} .
$$

$$
\begin{aligned}
& \quad d_{E}\left(x, \overline{y_{5}}\right)=n_{1}-a_{0}+3 a_{2}+a_{5}+4 a_{6}+a_{7}+n_{2}-b_{0}+3 b_{2}+b_{5}+4 b_{6}+b_{7} \\
& +n_{3}-c_{0}+3 c_{2}+c_{5}+4 c_{6}+c_{7}+n_{4}-d_{4}+d_{1}+4 d_{2}+d_{3}+3 d_{6}+n_{5}-e_{4}+e_{1} \\
& +4 e_{2}+e_{3}+3 e_{6}+n_{6}-f_{4}+f_{1}+4 f_{2}+f_{3}+3 f_{6}+n_{7}-g_{4}+g_{1}+4 g_{2}+g_{3}
\end{aligned}
$$

$$
+3 g_{6} \text {, where } \overline{y_{5}}=\overbrace{00 \ldots 00}^{n_{1}} \overbrace{00 \ldots 00}^{n_{2}} \overbrace{00 \ldots 00}^{n_{3}} \overbrace{10 \ldots 10}^{n_{4}} \overbrace{10 \ldots 10}^{n_{5}} \overbrace{10 \ldots 10}^{n_{6}} \overbrace{10 \ldots 10}^{n_{7}} \text {, is }
$$ the sixth vector of C^{n}, where $n=n_{6}$.

$$
\begin{gathered}
d_{E}\left(x, \overline{y_{6}}\right)=n_{1}-a_{2}+3 a_{0}+4 a_{4}+a_{7}+n_{2}-b_{0}+3 b_{2}+b_{5}+4 b_{6}+b_{7} \\
+n_{3}-c_{2}+3 c_{0}+4 c_{4}+c_{5}+c_{7}+n_{4}-d_{4}+d_{1}+4 d_{2}+d_{3}+3 d_{6}+n_{5}-e_{6}+4 e_{0} \\
+e_{1}+e_{3}+3 e_{4}+n_{6}-f_{4}+f_{1}+4 f_{2}+f_{3}+3 f_{6}+n_{7}-g_{6}+4 g_{0}+g_{1}+g_{3}+3 g_{4}
\end{gathered}
$$

where $\overline{y_{6}}=\overbrace{0 v \ldots 0 v}^{n_{1}} \overbrace{00 \ldots 00}^{n_{2}} \overbrace{0 v \ldots 0 v}^{n_{3}} \overbrace{10 \ldots 10}^{n_{4}} \overbrace{1 v \ldots 1 v}^{n_{5}} \overbrace{10 \ldots 10}^{n_{6}} \overbrace{1 v \ldots 1 v}^{n_{7}}, \quad$ is the seventh vector of C^{n}, where $n=n_{7}$.

$$
\begin{gathered}
d_{E}\left(x, \overline{y_{7}}\right)=n_{1}-a_{3}+3 a_{1}+a_{4}+4 a_{5}+a_{6}+n_{2}-b_{2}+3 b_{0}+4 b_{4}+b_{5}+b_{7} \\
+n_{3}-c_{1}+3 c_{3}+c_{4}+c_{6}+4 c_{7}+n_{4}-d_{4}+d_{1}+4 d_{2}+d_{3}+3 d_{6}+n_{5}-e_{7}+e_{0} \\
+4 e_{1}+e_{2}+3 e_{5}+n_{6}-f_{6}+4 f_{0}+f_{1}+f_{3}+3 f_{4}+n_{7}-g_{5}+g_{0}+g_{2}+4 g_{3}+3 g_{7},
\end{gathered}
$$

$$
\text { where } \overline{y_{7}}=\overbrace{01+v \ldots 01+v}^{n_{1}} \overbrace{0 v \ldots 0 v}^{n_{2}} \overbrace{01 \ldots 01}^{n_{3}} \overbrace{10 \ldots 1011+v \ldots 11+v}^{n_{4}} \overbrace{1 v \ldots 1 v}^{n_{6}}
$$

$\overbrace{11 \ldots 11}^{n_{7}}$, is the eighth vector of C^{n}, where $n=n_{8}$.
Hence, $\quad r_{E}\left(C^{n}\right) \leq \frac{1}{2}\left[5\left(n_{1}+n_{3}+n_{6}\right)+3 n_{2}+9 n_{4}\right]+2\left(n_{5}+n_{7}\right) . \quad$ The
remaining part of proof is pursue for part 2 with Bachoc and Chinese Euclidean distance.

4. Simplex Codes of type α and type β in R

In this section, consider the construction of simplex codes of type α and type β over R.

Let $m_{2, k}^{\alpha}$ be the generator matrix of $S_{2, k}^{\alpha}$ of the binary simplex code of type α is defined as $\left[\frac{00 \ldots 0 \mid 11 \ldots 1}{m_{2, k-1}^{\alpha} \mid m_{2, k-1}^{\alpha}}\right]$, for $k \geq 2$, where $m_{2,1}^{\alpha}=[0,1]$. In [6], the simplex codes $S_{4, k}^{\alpha}$ of type α over R were defined. The generator matrix $G_{\mathbb{R}, k}^{\alpha}$ of $S_{\mathbb{R}, k}^{\alpha}$ is $\left[\left.\frac{00 \ldots 0}{G_{\mathbb{R}, k-1}^{\alpha}}\left|\frac{11 \ldots 1}{G_{\mathbb{R}, k-1}^{\alpha}}\right| \frac{v v \ldots v}{G_{\mathbb{R}, k-1}^{\alpha}} \right\rvert\, \frac{1+v 1+v \ldots 1+v}{G_{\mathbb{R}, k-1}^{\alpha}}\right]$, for $k \geq 2$, where $G_{\mathbb{R}, k-1}^{\alpha}=[01 v 1+v]$.

The generator matrix of S_{k}^{α}, the simplex code of type α over R is defined as the concatenation of $2^{2 k}$ copies of the generator matrix of $S_{2, k}^{\alpha}$ and 2^{k} copies of the generator matrix of $S_{\mathbb{R}, k}^{\alpha}$ given by

$$
\begin{equation*}
\Theta_{k}^{\alpha}=\left[m_{2, k}^{\alpha}\left|m_{2, k}^{\alpha}\right| \ldots\left|m_{2, k}^{\alpha}\right| G_{\mathbb{R}, k}^{\alpha}\left|G_{\mathbb{R}, k}^{\alpha}\right| \ldots \mid G_{\mathbb{R}, k}^{\alpha}\right], k \geq 1 . \tag{4.1}
\end{equation*}
$$

The standard form of Θ_{k}^{α} of the generator matrix of S_{k}^{α} is

$$
\Theta_{k}^{\alpha}=\left[\left.\frac{0000 \ldots 00}{\Theta_{k-1}^{\alpha}}\left|\frac{0101 \ldots 01}{\Theta_{k-1}^{\alpha}}\right| \frac{\ldots}{\ldots} \right\rvert\, \frac{11+v 11+v \ldots 11+v}{\Theta_{k-1}^{\alpha}}\right],
$$

for $k \geq 2$, where $\Theta_{1}^{\alpha}=[00010 v 01+v 10111 v 11+v]$. The length of the simplex code of type α over R is equal to $2^{3 k+1}$ and the number of code words is equal to $2^{k_{0}} \mathbb{R}^{k_{1}}$ for some k_{0} and k_{1}. In the case where $k=1$ with $k_{0}=0$ and $k_{1}=1, \mathrm{n}$ that all of the code words of the simplex code S_{1}^{α} are generated by Θ_{1}^{α} and are $\{0000000000000000,00010 v 01+v 10111 v 11+v, 000 v$
$000 v 000 v, 0001+v 0 v 011011+v 1 v 11\}$. The type β simplex code S_{k}^{β} is a punctured version of S_{k}^{α}. The number of codewords is $2^{k_{0}} \mathbb{R}^{k_{1}}$ for some k_{0} and k_{1} and its length is $2^{k}\left(2^{k-2}+1\right)\left(2^{k}-1\right)$. The generator matrix of S_{k}^{β} is the concatenation of 2^{k} copies of the generator matrix of $S_{2, k}^{\beta}$ and 2^{k-1} copies of the generator matrix of $S_{\mathbb{R}, k}^{\beta}$ given by

$$
\begin{equation*}
\Theta_{k}^{\alpha}=\left[m_{2, k}^{\beta}\left|m_{2, k}^{\beta}\right| \ldots\left|m_{2, k}^{\beta}\right| G_{\mathbb{R}, k}^{\beta}\left|G_{\mathbb{R}, k}^{\beta}\right| \ldots \mid G_{\mathbb{R}, k}^{\beta}\right], \text { for } k \geq 2, \tag{4.2}
\end{equation*}
$$

where $m_{2, k}^{\beta}$ is the generator matrix of the binary simplex code of type β is $\left[\left.\frac{11 \ldots 1}{m_{2, k-1}^{\alpha}} \right\rvert\, \frac{00 \ldots 0}{m_{2, k-1}^{\beta}}\right]$, for $k \geq 3$, with $m_{2,2}^{\beta}=\left[\left.\frac{11}{01} \right\rvert\, \frac{0}{1}\right]$, and $G_{\mathbb{R}, k}^{\beta}$ is a generator matrix of the simplex code over R of type β is defined as $\left[\frac{11 \ldots 1}{G_{\mathbb{R}, k-1}^{\beta}}\left|\frac{00 \ldots 0}{G_{\mathbb{R}, k-1}^{\beta}}\right| \frac{v v \ldots v}{G_{\mathbb{R}, k-1}^{\beta}}\right]$, for $k \geq 3$, with $\quad G_{\mathbb{R}, 2}^{\beta}=\left[\frac{1111}{01 v 1+v}\left|\frac{0}{1}\right| \frac{v}{1}\right]$. The following theorems provide upper bounds on the covering radius of simplex codes over R with respect to the different distance (D).

Theorem 4.1. Prove that, $\quad r_{L}\left(S_{k}^{\alpha}\right) \leq 2^{k}\left(2^{2 k-1}+2^{2 k}+1\right), r_{L}\left(S_{k}^{\alpha}\right)$
$\leq \frac{2^{k}\left(3.2^{2 k-1}+5\left(1+2^{2 k}\right)\right)}{3}, r_{L}\left(S_{k}^{\alpha}\right) \leq \frac{2^{k}\left(3.2^{2 k-1}+2^{2 k}-1\right)}{3}$ and $r_{C E}\left(S_{k}^{\alpha}\right)$ $\leq 2^{k}\left(3.2^{2 k-1}+2^{2 k}+1\right)$, here $r_{d}\left(S_{k}^{\alpha}\right)$ be a covering radius of type α-simplex codes in R with different distance (D).

Proof. In R-Simplex codes of type α have a Lee weight equal to $2^{3 k}$ or 3.2^{k-1}. From the matrix (4.1), Proposition [13] and Theorem 3.5 with different distance (D), then

$$
\begin{aligned}
r_{L}\left(S_{k}^{\alpha}\right) & \leq r_{L}\left(2^{2 k} S_{2, k}^{\alpha}\right)+r_{L}\left(2^{2 k} S_{\mathbb{R}, k}^{\alpha}\right)=2^{2 k} r_{L}\left(S_{2, k}^{\alpha}\right)+2^{k} r_{L}\left(S_{\mathbb{R}, k}^{\alpha}\right) \\
& \leq 2^{2 k} r_{H}\left(S_{2, k}^{\alpha}\right)+2^{k} r_{L}\left(S_{\mathbb{R}, k}^{\alpha}\right) \\
& \leq 2^{2 k}\left(2^{k-1}\right)+2^{k}\left[\left(3.2^{2(k-1)}+3.2^{2(k-2)}+\ldots+3.2^{2.1}\right)+r_{L}\left(S_{\mathbb{R}, k}^{\alpha}\right)\right]
\end{aligned}
$$

$$
r_{L}\left(S_{k}^{\alpha}\right) \leq 2^{k}\left(2^{2 k-1}+2^{2 k}+1\right)
$$

The remaining part of proof is unification from part 1 but different distance (D).

Theorem 4.2. The covering radius of the R-Simplex codes of type β are given by

$$
\begin{gathered}
r_{L}\left(S_{k}^{\beta}\right) \leq 2^{k-1}\left(2^{k}+2^{2 k-1}-2^{k-1}-2\right), r_{E}\left(S_{k}^{\beta}\right) \leq \frac{5.2^{3 k-1}-6.2^{k-1}-2^{k+2}}{6} \\
r_{B}\left(S_{k}^{\beta}\right) \leq \frac{2^{3 k}+3\left(2^{2 k-1}+2^{3(k-1)}-3.2^{2 k-3}-2^{k-1}\right)}{3} \text { and } \\
r_{C E}\left(S_{k}^{\beta}\right) \leq 2^{3 k-1}-8.2^{k-1}
\end{gathered}
$$

Proof. From (4.2), Proposition [13] and Theorem 3.5 with different distance(D), so

$$
\begin{aligned}
r_{L}\left(S_{k}^{\beta}\right) & \leq r_{L}\left(2^{k} S_{2, k}^{\beta}\right)+r_{L}\left(2^{2 k} S_{\mathbb{R}, k}^{\beta}\right)=2^{k} r_{L}\left(S_{2, k}^{\beta}\right)+2^{k-1} r_{L}\left(S_{\mathbb{R}, k}^{\beta}\right) \\
& \leq 2^{k} r_{H}\left(S_{2, k}^{\beta}\right)+2^{k-1} r_{L}\left(S_{\mathbb{R}, k}^{\beta}\right)=2^{k}\left(\frac{2^{k}-1}{2}\right)+2^{k-1}\left[2^{k-1}\left(2^{k}-1\right)-1\right] \\
r_{L}\left(S_{k}^{\beta}\right) \leq & 2^{k-1}\left(2^{k}+2^{2 k-1}+2^{k-1}+2\right) .
\end{aligned}
$$

The Proof 2,3 and 4 is use for 1 with apply different distance (D).

5. MacDonald Codes of type α and type β in R

The q-ary MacDonald code $M_{k, t}(q)$ over the finite field \mathbb{F}_{q} is a unique $\left[\frac{q^{k}-q^{t}}{q-1}, k, q^{k-1}-q^{t-1}\right]$ linear code in which every non-zero codeword has weight either q^{k-1} or $q^{k-1}-q^{t-1}$ [17]. In [18], the author studied the covering radius of MacDonald codes over a finite field. In fact, the author has given many exact values for smaller dimension. In [14], authors have defined the MacDonald codes over a ring using the generator matrices of the Simplex codes. For $2 \leq t \leq k-1$, let $G_{k, t}^{\alpha}$ be the matrix obtained from G_{k}^{α} by deleting columns corresponding to the columns of G_{t}^{α}. That is,

$$
\begin{equation*}
G_{k, t}^{\alpha}=\left[G_{k}^{\alpha} \backslash \frac{0}{G_{t}^{\alpha}}\right] \tag{5.1}
\end{equation*}
$$

and let $G_{k, t}^{\beta}$ be the matrix obtained from G_{k}^{β} by deleting columns corresponding to the columns of G_{t}^{β}. That is,

$$
\begin{equation*}
G_{k, t}^{\beta}=\left[G_{k}^{\beta} \backslash \frac{0}{G_{t}^{\beta}}\right] \tag{5.2}
\end{equation*}
$$

where $[A \backslash B]$ denotes the matrix obtained from the matrix A by deleting the columns of the matrix B and 0 is a $(k-t) \times 2^{2 t}\left((k-t) \times 2^{t-1}\left(2^{t}-1\right)\right)$. The parameters in MacDonald codes of α-type and β-type is $\left[4^{k}-4^{t}, k\right]$ and $\left[\left(2^{k-1}-2^{t-1}\right)\left(2^{k}+2^{t-1}\right), k\right]$ code over R. Now, construct the MacDonald codes over $\mathbb{Z}_{2} \mathbb{R}$ of type α and type β by using the generator matrix of the $\mathbb{Z}_{2} \mathbb{R}$ simplex codes of type α and type β. If $1 \leq t \leq k-1$, let $\Theta_{k, t}^{\alpha}$ (resp., $\Theta_{k, t}^{\beta}$) be the matrix of MacDonald codes $M_{k, t}^{\alpha}$ (resp., $M_{k, t}^{\beta}$) with parametrs $\left[2^{3 k+1}-2^{k+1}\left(2^{k}-2^{t}\right)\right] \quad$ (resp., $\quad\left[2^{3 k+1}\left(2^{2 k-1}+1\right)\left(2^{k}-1\right)-2^{k+t-1}\right.$ $\left.\left(2^{2 t-3}+1\right)\left(2^{t}-1\right)\right]$ obtained from Θ_{k}^{α} (resp., $\left.\Theta_{k}^{\beta}\right)$ by deleting columns corresponding to the columns of the matrix Θ_{t}^{α} and $0_{2^{2 t}} \times(k-t)$ (resp., Θ_{t}^{β} and $\left.0_{2^{2 t}} \times(k-t)\right)$. That is, for $k \geq 1$,

$$
\begin{equation*}
\Theta_{k, t}^{\alpha}=\left[m_{k, t}^{\alpha}|\ldots| m_{k, t}^{\alpha}\left|G_{k, t}^{\alpha}\right| \ldots \mid G_{k, t}^{\alpha}\right] \tag{5.3}
\end{equation*}
$$

where $M_{k, t}^{\alpha}$ (resp., $G_{k, t}^{\alpha}$) repeat $2^{2 k}$ (resp., 2^{k}) times in $\Theta_{k, t}^{\alpha}$ for $k \geq 3$,

$$
\begin{equation*}
\Theta_{k, t}^{\beta}=\left[m_{k, t}^{\beta}|\ldots| m_{k, t}^{\beta}\left|G_{k, t}^{\beta}\right| \ldots \mid G_{k, t}^{\beta}\right] \tag{5.4}
\end{equation*}
$$

where $M_{k, t}^{\beta}$ (resp., $G_{k, t}^{\beta}$) repeat $2^{2 k}$ (resp., 2^{k-1}) times in $\Theta_{k, t}^{\beta}$.
Theorem 5.1. For $t \leq r \leq k$,

1. $r_{L}\left(M_{k, t}^{\alpha}\right) \leq\left[2^{3 k+1}-2^{k+r}\left(2^{r}+2^{k}\right)\right]+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\alpha, 4}\right)\right]$,
2. $r_{E}\left(M_{k, t}^{\alpha}\right) \leq\left[\frac{2^{3(k+1)}+2^{k+r}\left(3.2^{r}+5.2^{k}\right)}{3}\right]$

$$
+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{E}\left(M_{k, t}^{\alpha, 4}\right)\right]
$$

3. $r_{B}\left(M_{k, t}^{\alpha}\right) \leq\left[\frac{7.2^{3 k}+2^{k+r}\left(4.2^{r}+3.2^{k}\right)}{3}\right]$
$+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{B}\left(M_{k, t}^{\alpha, 4}\right)\right]$,
4. $r_{C E}\left(M_{k, t}^{\alpha}\right) \leq\left[3.2^{3 k+1}-2^{k+r}\left(2^{r}+2.2^{k}\right)\right]$

$$
+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{C E}\left(M_{k, t}^{\alpha, 4}\right)\right]
$$

Proof. Use, the matrix (5.3), Proposition [13] and Theorem 3.5, thus

$$
\begin{aligned}
& r_{L}\left(M_{k, t}^{\alpha}\right) \leq r_{L}\left(2^{2 . k} M_{k, t}^{\alpha, 2}\right)+r_{L}\left(2^{2 . k} M_{k, t}^{\alpha, 2}\right)=2^{2 . k} r_{L}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\alpha, 2}\right), \\
& \\
& \leq 2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\alpha, 2}\right), \\
& \\
& \leq 2^{2 . k}\left(2^{k}-2^{r}\right)+2^{k}\left(2^{2 . k}-2^{2 . r}\right)+2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\alpha, 2}\right), \\
& r_{L}\left(M_{k, t}^{\alpha, 2}\right) \leq\left[2^{3 k+1}-2^{k+r}\left(2^{k}-2^{r}\right)\right]+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\alpha, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\alpha, 2}\right)\right] .
\end{aligned}
$$

The remaining part of proof follows in part 1.
Theorem 5.2. For $t \leq r \leq k$,

1. $r_{L}\left(M_{k, t}^{\beta}\right) \leq\left[2^{3 k+1}-2^{k+r-1}\left(2^{k+1}+2^{r}-1\right)\right]$

$$
+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\beta, 4}\right)\right]
$$

2. $r_{E}\left(M_{k, t}^{\beta}\right) \leq\left[6.2^{3 k}-2^{k+r}\left(2^{k}+5.2^{r}+6\right)-6.2^{2 k}\right]$

$$
+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{E}\left(M_{k, t}^{\beta, 4}\right)\right],
$$

3. $r_{B}\left(M_{k, t}^{\beta}\right)$
$\leq \frac{6\left(2^{3 k}-2^{2 k+r}\right)+4\left(2^{3 k}-2^{k+2 r}\right)+3\left(2^{3 k-2}-2^{k+2(k-1)}\right)+9\left(2^{k+r-1}-2^{2 k+1}\right)}{6}$

$$
+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{B}\left(M_{k, t}^{\beta, 4}\right)\right],
$$

4. $r_{C E}\left(M_{k, t}^{\beta}\right) \leq\left[2^{3 k+1}-2^{k+r}\left(2^{k}+2^{r}+1\right)\right]$

$$
+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{C E}\left(M_{k, t}^{\beta, 4}\right)\right] .
$$

Proof. Use, the matrix (5.4), Proposition [13] and Theorem 3.5, so

$$
\begin{aligned}
r_{L}\left(M_{k, t}^{\beta}\right) \leq & r_{L}\left(2^{2 . k} M_{k, t}^{\beta, 2}\right)+r_{L}\left(2^{2 . k} M_{k, t}^{\beta, 2}\right) \\
& \leq 2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\beta, 4}\right), \\
\leq & 2^{2 . k} r_{L}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\beta, 4}\right), \\
\leq & 2^{2 . k}\left(2^{k}-2^{r}\right)+2^{k}\left[\left(2^{2 . k}\left(2^{k}-1\right)-2^{2-1}\left(2^{k}-1\right)\right)\right] \\
& \quad+2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\beta, 4}\right), \\
& r_{L}\left(M_{k, t}^{\beta, 2}\right) \leq\left[2^{3 k+1}-2^{k+r}\left(2^{k+1}-2^{r}-1\right)\right]+\left[2^{2 . k} r_{H}\left(M_{k, t}^{\beta, 2}\right)+2^{k} r_{L}\left(M_{k, t}^{\beta, 4}\right)\right] .
\end{aligned}
$$

The remaining part of proof is pursue in part 1.

References

[1] T. Abualrub, I. Siap and N. Aydin, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes, IEEE Trans. Inform. Theory, 60(3) (2014), 115-121.
[2] T. Aoki, P. Gaborit, M. Harada, M. Ozeki and P. Sole, On the covering radius of \mathbb{Z}_{4} codes and their lattices, IEEE Trans. Inform. Theory 45(6) (1999), 2162-2168.
[3] M. Bilal, J. Borges, S. T. Dougherty and C. Fernandez-Cordoba, Maximum distance separable codes over \mathbb{Z}_{4} and $\mathbb{Z}_{2} \mathbb{Z}_{4}$, Des. Codes Cryptogr. 61(1) (2011), 31-40.
[4] J. Borges, S. T. Dougherty and C. Fernandez-Cordoba, Characterization and constructions of self-dual codes over $\mathbb{Z}_{2} \mathbb{Z}_{4}$, Adv. Math. Commun. 6(3) (2012), 287-303.
[5] J. Borges, C. Fernandez-Cordoba, J. Pujol, J. Rifa and M. Villanueva, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54(2) (2010), 167-179.

Advances and Applications in Mathematical Sciences, Volume 23, Issue 4, February 2024
[6] M. C. Bhandari, M. K. Gupta and A. K. Lal, On \mathbb{Z}_{4}-Simplex codes and their grayimages, Applied Algebra, Algebraic Algorithms and Error Correcting Codes, AAECC-13, Lecture Notes in Computer Science 1719 (1999), 170-180.
[7] P. ChellaPandian and C. Durairajan, On the Covering radius of some Codes over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$, International Journal of Research in Applied, Natural and Social Sciences, Impact Journal 2(1) (2014), 61-70.
[8] P. Chella Pandian and C. Durairajan, On various parameters of \mathbb{Z}_{q}-simplex codes for an even integer q, Journal of Algebra and Discrete Mathematics 19(2) (2015), 243-253.
[9] P. Chella Pandian and C. Durairajan, On \mathbb{Z}_{q}-linear and \mathbb{Z}_{q}-Simplex codes and its related parameters for q is a prime power, Journal of Discrete Mathematical Sciences and Cryptography 18(1, 2) (2015), 81-94.
[10] P. Chella Pandian, On covering radius of codes over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$, using chinese euclidean distance, Journal Discrete Mathematics, Algorithms and Applications 9(2) (2017), 1750017(1-8).
[11] P. Chella Pandian, On covering radius of codes over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$, using Bchoc distance, International Journal of Mathematics And its Applications 5(4C) (2017), 277-282.
[12] Christine Bachoc, Application of coding theory to the construction of modular lattices, Journal of Combin. Theory Ser. A78, 1997, 92-119.
[13] G. D. Cohen, M. G. Karpovsky, H. F. Mattson and J. R. Schatz, Covering radius-Survey and recent results, IEEE Trans. Inform. Theory 31(3) (1985), 328-343.
[14] C. J. Colbourn and M. K. Gupta, On quaternary MacDonald codes, Proc. Information Technology: Coding and Computing (ITCC), April (2003), 212-215.
[15] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Rep. Suppl. 10 (1973).
[16] P. Delsarte and V. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory 44(6) (1998), 2477-2504.
[17] S. Dodunekov and J. Simonis, Codes and projective multisets, The Electronic Journal of Communications 5 R37, (1998).
[18] C. Durairajan, On Covering Codes and Covering Radius of Some Optimal Codes. Ph.D. Thesis, Department of Mathematics, IIT Kanpur, (1996).
[19] M. K. Gupta, On some linear codes over $\mathbb{Z}_{2^{s}}$, Ph.D. Thesis, IIT Kanpur, (1999).
[20] M. K. Gupta, D. G. Glynn and T. Aaron Gulliver, On senary simplex codes, in International Symposium, on Applied Algebra, Algebraic Algorithms and ErrorCorrecting Codes (Springer, Berlin Heidelberg, 2001), pp. 112-121.
[21] M. K. Gupta and C. Durairajan, On the Covering Radius of some Modular Codes, Advances in Mathematics of Communications 8(2) (2014), 129-137.

[^0]: 2020 Mathematics Subject Classification: 16P10, 11T71, 94B05, 11H71, 94B65.
 Keywords: additive codes, covering radius, different weight, simplex code, Macdonald code. Received July 26, 2022; Revised September 14, 2023; Accepted March 14, 2023

