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Abstract

In this paper, the covering radius of codes over R = ZyR, where R =Zg + vZg, v =v

with different weight are discussed. The block repetition codes over R is defined and the
covering radius for block repetition codes, simplex code and macdonald code of type o and type B
in R are obtained.

1. Introduction

Codes over finite commutative rings have been studied for almost 50
years. The main motivation of studying codes over rings is that they can be
associated with codes over finite fields through the Gray map. Recently,
coding theory over finite commutative non-chain rings is a hot research topic.
Recently, there has been substantial interest in the class of additive codes. In
[15, 16], Delsarte contributes to the algebraic theory of association scheme
where the main idea is to characterize the subgroups of the underlying
abelian group In a given association scheme. The covering radius is an
important geometric parameter of codes. It not only indicates the maximum
error correcting capability of codes, but also relates to some practical
problems such as the data compression and transmission. Studying of the
covering radius of codes has attracted many coding scientists for almost 30
years. The covering radius of linear codes over binary finite fields was studied
in [13].

2020 Mathematics Subject Classification: 16P10, 11T71, 94B05, 11H71, 94B65.
Keywords: additive codes, covering radius, different weight, simplex code, Macdonald code.
Received July 26, 2022; Revised September 14, 2023; Accepted March 14, 2023



302 P. CHELLA PANDIAN

Additive codes over ZyZ, have been extensively studied in [1, 3, 4, 5].

Enormous results were made available on the simplex codes over finite fields
and finite rings. A few of them are [6, 8, 9, 19, 21]. In [7, 10, 11], the authors,
in particular, gave lower and upper bounds on the covering radius of codes

over the ring Zg + uZy where u? = 0 with respect to different distance and

they explained the covering radius of various repetition codes, Simplex Codes
and Macdonald Codes (Type a and Type B) The above results motivate us to

work in this Paper.
2. Preliminaries

In Zy and R = Zg + VZ,, v? = v be the rings of integers modulo 2 and let

Z,% and R" denote the space of n-tuples over these rings. A ring
R = ZsR = {00, 01, Ov, 01 + v, 10,11, 1v, 11 + v}, where R ={0,1, v, 1 + v},

v? = v with integer modulo is 2. If C be a non-empty subset C of Z% is called

a code and if that subcode is a linear space, then C is said to be linear code.

In this section, some preliminary results are given [3, 5]. A non-empty set

C is a Radditive code if it is a subgroup of Z% x R®. In this case, C is also
isomorphic to an abelian structure Z% x R® for some vy and & and type of Cis a
2"R" as a group. It pursue that it has |C| = 2Y*2% codewords and the
number of order for two codewords in C is |C|= 2Y" The Gray
map :p: R —> Z2 is defined as p(0) = (00), p(1) = (01), p(v) = (11) and
1 +v) = (10) and the extension of the Gray map &:ZJ x R® — 72,
8(u, w) = (u, wwy), ..., p(ws)), Yu e Z4 and  (wi, ..., ws) € R®, with
n =y + 23. Then the binary image of a R-additive code under the extended

Gray map is called a R-linear code of length n =y + 28. The Hamming

weight of u denoted by wg («) and wy,(w) and wg(w) the Lee and Euclidean

weights of w respectively, where u e ZE and w e R® are defined as
wr(x;)=0 if x; =0,1 if x; =1, (1 +v) and 2 if x; = v and wg(x;) =0 if
x; =0,1 if x; =1, (1 +v) and 4 if x; = v. The Lee weight and Euclidean
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weight of x is defined as wy(x)=wy(w)+wr(w) and wg(x)
= wy ) +wg(w), where x = (u, w) e Z} x R®, and w = (uq, ..., uy) € 2}
and w = (wy, ..., wg) € R%. The Gray map defined above is an isometry
which transforms the Lee distance defined over Z% x R® to the Hamming
distance defined over Z%, with n = y + 28. In [12], the Bachoc weight of x is
defined as wg(x;) =0 if x; = 0,1 if x; =1 and 21if x; = v, (1 + v).

Therefore, the Bachoc weight of x as wig(x) = wtg(u) + wig(w), where
x = (u, w) e Z} xR® and u = (uq, ..., uy) e Zh and w = (wy, ..., ws) € RO,

The Chinese Euclidean weight of x is given as witcg(x;) =0 if x; =0, 2 if

x; =1,(1+v) and 4 if x; =v [20]. Define, wcg(x) = wty(u)+ wicg(w),
where x = (u, w)eZ%st and u=(u,..,u) el and

w = (wy, ..., ws) e RO If ¢, cy € C, be any two distinct codewords of D
distance is defined as dp(C) = min {dp(c;, ¢g) | ¢ —cg # 0 and ¢;, ¢y € C}.
The minimum D weight of C is dp(C) = min {dp(c;, ¢9) | ¢; —c9 # 0 and
¢, ¢g € C}. In C is a linear code C, thus dp(C) = min {wp(c)|lc = 0 e C}.
Therefore, dp(c;, cs) = wp(cy, ¢y). Let C < R™ is a linear code, where n is a
length of code, the number of codewords N and the minimum D distance dp
is said to be an (n, N, dp) code in R, where D = {Lee(L), Euclidean (E),
Bachoc (B), Chinese Euclidean (CE)}.

3. The Covering Radius of the Block Repetition Codes over R

The covering radius of a code C is the smallest number r such that the
spheres of radius r around the codewords cover Z% xR® = R and thus the

covering radius of a code C over R with respect to the different distance, such
as (Lee, Euclidean, Bachoc, Chinese Euclidean) is given

C) = in d(u, c)).
r4(C) max tmin d(u, )}

In F, =1{0,1, By, ..., Bg_1} is a finite field. Let C be a g-ary repetition
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code C over F,. Thatis C = B=PB..R)IB < F,} and the repetition code

C is an [n, 1, n] code. Therefore, the covering radius of the code C is

[ @—l this true for binary repetition code. In [7, 10, 11], the authors

studied for different classes of repetition codes over Zg + uZy, u? =0 and
their covering radius has been obtained. Now, generalize those results for

codes over R = Z3R, v? = v. Consider the repetition codes over R. For a fixed
1<i<7 Forall1<j=#i<T7, n; =0, then the code C" = C™ is denoted

by C;. Therefore, the seven basic repetition codes are the following table,

Generator Matrix Code Parameters-
[n, k(N), di(dj)]i,j:[)

n1(3) Cy(3) = {co, c1, co, 3} (m(3), 4, n, n, n, 2n)

ng Cy = {cg, o} (m(3), 4, n, n, n, 2n)
GQ = [OU...OU]

"4 Cy = {co, c4} (m(z), 4, n, n, n, 2n)
G, = f10...10]

n5(7) Cs(7) = {cos 15 ¢2, €3, ¢4, C5, Cqs C7} [n5(7), 8, n] d; = n
Gs =[11...11] = G;

here ¢o = (00...00), ¢;(01...01), cg = (0v...0v), ¢35 = (01 +v...01 + v),
¢y =(10...10), ¢c5 = (11...11), ¢g = (v...1v), ¢7 = (11 +v...11 + v).

Theorem 3.1. Let Cjicj<7, be a «code in R. Then,

B <€) = mlCy) < 2, B < (Co) < 20, 2 <y (Cy) < 2, % < (Cs)
3n 3n 3n . . .
=r;(Cy) < SR <r(Cg) < 5 where r(C;) is a covering radius of

Cj 1<j<7 with Lee distance.
Proof. For ¢ € Cj 1<j<7 be a codeword of code C; in R. Let ¢;(c)g<;<7 is

the number of occurrences of symbol i in the codeword c. Let x € R" by
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(to, t1, b9, t3, ty, ts, tg, t7),  where Zzzotj =n, then  dp(x, 00)
=n—tg+ly+lg+2 +17, dp(x, 01) = n—t; +1tg +1t4 +1tg + 27, b7,

dr(x, 00) = n—tg + 1ty + 2y + b5 + 17, dp(x, 0L+ V) = n —t3 + & + by + 25
+tg, dp(x,10) = n—ty +1; + 2y + 15 +1g, dp(x, 11) = n —t5 + 1o + by + 23
+tg, dp(x, W) = n—tg + 2 +1; +1t3 + by, dr(x, 11 +0) = n — by + £y + 2t
+tg +t5. In Code, C; =C3e R, therefore, dp(x,C;)=d(x,C3)
= min {d (x, 00), dy (x, 01), d(x, Ov), dy (x, 01 + v)} < 2n, then
r;(Cy) = r,(C3) < 2n.

NN
|3
NG
|3

4
——

S S _
If x=00..0001...010v0...0001 +v...01 +v e R, then df(x, 00)

= dy (x, 01) = dy (x, 00) = dy (x, 01 + v) = % Thus  r,(Cy) = rp.(C3) = g

and  so % <r(C;)=r(Cg)<2n. In Code, Cqy e R,d(x,Cy)
= min {dj (x, 00), d,(x, Ov)} < 2n. Then r.(Cq) < 2n. If
n n
2 4
— N

n

x=00...000v...00 € R*, then dj(x, 00) = d(x, Ov) = 2(%) =3 Thus

r;(Cq) < % and so % < r;(Cy) < 2n. The remaining part of proof is follows

from the code C; and Cy for they Codes Cy4, Cs, Cg. o

Theorem 3.2. In Euclidean weight for the code Cji<j<7, prove the

??Tn <rg(Cy) = rg(Cs) < 2n, n < rg(Cy) < 3n, % < rg(Cy) < 4n, n < rg(Cs)

— rg(Cy) < 2n, %” < r5(Cg) < 57”

Proof. In Code C; ;_;,7 with Euclidean weight is apply to theorem 3.1. 0

Theorem 3.3. Show that, % < rg(Cy) = rg(C3) < 2n, % < rg(Cy)
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<on B rp(C) < 2 T p(Cs) = rp(C) < TV and 3R < rp(Cy)
4 278 4 4
< 77’1 , here rg(C;) be a covering radius of code Cj 1<j<7 with Bachoc weight.

Proof. To apply theorem 3.1 for Code C; ;_;+,7 with Bachoc weight. o

Theorem 3.4. In Chinese Euclidean weight of code of C;1<j<7, to find

n 5n

11n 5n
n < rcg(Cy) = rop(Cy) < 4 0 ns rce(Cy) < 5= rce(Cy) < 4n, e

5n

5 5
< 1eg(Cs) = rcp(Cr) < 7” and 2% < 1o (Cs) < 7”

Proof. In Code C; ;.47 with Chinese Euclidean weight is apply to

theorem 3.1. o

Block repetition code in R

The block repetition code C" over R is a R-additive code.

m na n3 nq 5 g

———
Let G =[01...010v...0001 +v...01 + v10...1011...111v...1v

m

11+wvl...11+vl] be a generator matrix with the parameters of
on 7 .

([n= ijlnj, 8,d;, = min{ny + nz + ng + ny, ny + 2ny + ng + ng + 2ng
+ng}, dg = min {ny + ng + ng + ny, ny + 4ng + ng + n5 + 4ng + ny}, dg =

min {ny + ng + ng + ny, n; + 2n9 + 2ng + nz + 2ng + 2n;}, dog = min {ny + ny
ng + n7)j}

Theorem 3.5. Let C" be the block repetition code in R with length is n.

Then the covering radius of block repetition code is

L r(C™) =2n, ifn =...=ny =n.

3(ny + ng) + ny + 4(ng + ns + ny) + Sng
’ 4

2 < I‘E(Cn)

< 5(ny + ng + ng) + 3n22 +9ny + 4(ns + n7)’
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5(ny + ng) + 4no + 2n4 + 7(ns + ny) + 61,
(1 3) 2 84 (5 7) 6 SI‘B(Cn)

@

< 18(ny + ng + ng) + 170y +15(ny + 15 + ng + 17) an

< 3 d

4(ny + +no + na) + ny + dlns + ng + + 6n,
(m 2 3) 44(5 6 +17) GSrCE(Cn)

< 6(n + ng + ng) + 81215 + 5(ns + ng + n7)‘

Proof. For the Code, that ¢(C™™) is the set given by
{000 ...000000 ...000000 ...000000 ... 000000 ...000000 ... 000000 ... 000,
001...001011...011010...010100...100101...101111...111110...110,
001...001011...011010...010000...000001...001011...011010...010,
011...011000...000011...011000...000011...011000...000011...011,
010...010011...011001...001000...000010...010011...011001...001,
000...000000...000000...000100...100100...100100...100100...100,
011...011000...000011...011100...100111...111100...100111...111,
010...010011...011001...001100...100110...110111...111101...101}.
By Proposition [2], give r.(C™™) = r(¢(C™)) = 2n. Using Proposition [13],
Theorem 3.2, 3.3 and 3.4, thus

o 3(711 + n3) +ny + 45;’1,2 + ng + n7) + 5”6 < T‘E(Cn),

. 5(ny + ng) + 4ng + 2ny4 + 7(n5 + n7) + 6ng

3 < rg(C") and

. Hm ++ng +ng) + ny Z 5(ns + ng + ny) + 6ng < rog(C™)

Let  x = xjx9xgx4%5xgx7 € R"  with  xy, x9, X3, X4, X5, Xg, X7 18

(a;), (&), (i), (d;), (&), (f;), (gi)i=o,1, 9.3.4.5,6,7 respectively such that ny
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7 7 7
:z]':oaj’n2 :z]':obj’n?) :zj'zocj’ml =Z _odj» M Z —0€i>

7 7 -
n6=Zj:0fj,n7:Zj:Ogj. Then dg(x, ¥0) = ny — ag + 3ag + a5 + 4ag
+a7+n2—b0+3b2+b5+4b6+b7+n3—co+302+c5+406+c7+n4—d0
+3d2+d5+4d6+d7+n5—e0+3e2+e5+4e6+e7+n6—f0+3f2+f5+4f6

m ng n3

+f7 + hy — 89 + 389 + 85 + 485 + 87, Where yO—OO .0000...0000...00
ny ng ng ny

— . n

00...0000...0000...0000...00, is the first vector of C*, where n = ny.
dE(x,y_l):nl—al+3a3+a4+a6+4a7+n2—b2+3b0+4b4+b5+b7

+n3—c3+361+4c5+c6+n4—d4+d1+4d2+d3+3d6+n5—e5+e0

+eg +4deg +3e7 +ng —fo +4fo + i+ f3+3fy +ng — g7 + 89 + 481 + 89 + 385,

n ng ng ny ns ng

—~—~—

where yl—Ol .010v...0001 +v...01 +v10...1011...111v...Tv
n

———
11 +v...11 + v, is the second vector of C", where n = n,.

dg(x, y9) = ny — ay + 3ag + ay + ag + 4a; + ng — by + 3by + 4by + by + by
+ng —cg +3c) +4c5 +cg +ny —dy +3dy + dy + 4dg + dy + ng5 — e + 3e3
+ey +eg +der +ng —fo +3fo +4fy + f5+ f7 + 7 — 83 + 381 + 84 + 485 + &6
n ny ng ny 15 ng

—~— T

where y2—01 .010v...0001 +v...01 +v00...0001...010v...0v
ny
f—/%
01 + v...01 + v, is the third vector of C", where n = ns.
dE(x,jTg):nl—a2+3a0+4a4+a5+a7+n2—b0+3b2+4b6+b5+b7
+n3—(:2+300+4c4+c5+c7+n4—d0+3d2+d5+4d6+d7+n5—ez+360

+dey +e5+er+ng—fo+3fa+fs+4fg +fr +n7 -89 +38) +484 + 85

m ng n3 Ny 5 ng g

- —_—— N — —_— .
+g7, where y3 =0v...0000...000v...0000...000v...0000...000v...0v 1is

the fourth vector of C", where n = ny.
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dg(x, v4) = n — ag + 3a; + ay + 4as + ag + a; + ng — by + 3by + 4b,
+b5 + by + ng —c; +3cg3 + ¢4 +cg+4ey +ny —dy +3dy +dy +4dg + dp + g
—e3+381+e4+4e5+66+n6—f2+3f0+4f4+f5+f7+n7—g1+3g3+g4

m na n3 g
——

—_— —— ——
+8¢ + 487, where ¥4 =01+v...01+v0v...0001...0100...00
ns ng ng
—_—mm—- Y —_ N —_ . .
01+v...01+v0v...0001 +v...01l + v, is the fifth vector of C”", where

n = ns.

dE(x,QT5)=n1—a0+3a2+a5+4a6+a7+n2—b0+3b2+b5+4b6+b7
+ng —cg +3cg +c5+4cg+cy+nyg—dy+dp+4dy +ds +3dg +n5 —eq + e
+462+e3+366+n6—f4+f1+4f2+f3+3f6+n7—g4+g1+4g2+g3

m na n3 4 5 g n7
—~~

+386, where y_5:OO...0000...OOOO...OOlO...1010...1010...1010...10, is

the sixth vector of C", where n = ng.

dE(x,y_G):nl—a2+3a0+4a4+a7+n2—bo+3b2+b5+4b6+b7
+n3—02+3co+4c4+c5+c7+n4—d4 +d1+4d2 +d3+3d6+n5—€6+4€0
+ep +eg+3ey +ng —fy+fi+4fa+f3+3fg+n7;— g6 +48 + 81 + 83+ 384,

m na n3 1y 5 ng n

—_ — .
where yg =0v...0000...000v...0010...101v...1v10...101v...1v, is the
seventh vector of C", where n = n;.

dE(x,E)znl—a3+3a1+a4+4a5+a6+n2—b2+3b0+4b4+b5+b7

+ng —c; +3cg +cy +cg+4cy+ny —dy+dp+4dy +dg +3dg +n5 —e7 + e

+4e; +eg +3e5 +ng — fo +4fo + [+ f3 +3fy +n7 — g5 + 89 + 8o + 483 + 387,

n ng ng ny n5 ng
—_ _——:
where y; =01+v...01+v0v...0001...0110...1011 + v...11 + v1v...1lv
nq
—

11...11, is the eighth vector of C", where n = ng.
Hence, rg(C") < %[5(7@1 + ng + ng) + 3ng + 9ny| + 2(n5 + ny). The
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remaining part of proof is pursue for part 2 with Bachoc and Chinese
Euclidean distance.

4. Simplex Codes of type a and type B in R

In this section, consider the construction of simplex codes of type o and
type B over R.

Let mg ; be the generator matrix of Sg ; of the binary simplex code of

00...0111...1

type o is defined as [ } for k& > 2, where mg, = [0, 1] In [6],

o o
mg p1 |l mg g

the simplex codes Sf’ . of type o over R were defined. The generator matrix

00...0
GR k11

1.1
GR k1

vu...v |[1+vl+v...1+v

Gﬁ,k Of Sﬂ%,k iS [

], for k> 2,

o ol
GR k-1 GRr k1

where Gg 1 =[01v1 +v]

The generator matrix of S}, the simplex code of type o over R is defined

as the concatenation of 22% copies of the generator matrix of SS‘, » and 2k

copies of the generator matrix of Sg , given by
Of =[m§p ImSpl..Im§plGE | GE ... |GE ] k21 (4.1)
The standard form of ®} of the generator matrix of Sy’ is

11+vll+v...11+v
051

i

of - {000(()1...00
Or_1

0101...01‘;
Oh1

for k> 2, where ©f =[00010v01+v10111v11 +v]. The length of the

23k+l

simplex code of type o over R is equal to and the number of code words

is equal to 2k Rk for some ky and k. In the case where £ =1 with k) =0
and k; = 1,n that all of the code words of the simplex code S{* are generated

by ©f and are {0000 000000000000, 00010v01+v10111v11 + v, 00 Ov
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00 0v 00 Ov, 0001 + v0v 011011 + v1v11l}. The type B simplex code S,E’ is a

punctured version of Sj. The number of codewords is 2k RM  for some ko
and k, and its length is 2¥(2"72 +1)(2* - 1). The generator matrix of S}E is

the concatenation of 2* copies of the generator matrix of Sg’ p and k-1

copies of the generator matrix of SH%  given by
Of =[mb , Imb 1..lmb  1GR  1GE ,1...1GR ] for k=2, (4.2

where mg ; 1s the generator matrix of the binary simplex code of type B is

11...1

00...0

, for k > 3, with mg 9 = [%‘ %}, and Gﬂ% k is a generator

o
| 2, k-1 mg k-1 |

matrix of the simplex code over R of type B is defined as

1111
Olvl +v

11...1 { 00...0 | vv...v

9
1|1

], for k>3, with GH%z:[

v
—1|. The
B B B }
| GR ko1 | Gk k-1 | G
following theorems provide upper bounds on the covering radius of simplex
codes over R with respect to the different distance (D).

Theorem 4.1. Prove that, 1 (SY) < 2F(@2%1 1 22% 4 1) r (SP)

2k(3.22k1 4 92k _ 1)

k 2k-1 2k
§2(3'2 +5(1+2 )), .

: (S§) <

and ror(SE)

< 2%(3.22%71 + 22% 1+ 1), here r7(SE) be a covering radius of type a-simplex
codes in R with different distance (D).

Proof. In R-Simplex codes of type o have a Lee weight equal to 23k or

3.2*"1 From the matrix (4.1), Proposition [13] and Theorem 3.5 with
different distance (D), then

r.(S) < ’"L(ZZkSg,k) + rL(ZZkSﬁ,k) = zzer(Sg,k) + 2er(S§,k)
< 2% (S5 1) + 27 (SE 1)

< 2%k (9k1) 1 ok[(3.92(k71) 4 3.92k~2) L 3.921) 4y (SE )]
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r(SE) < 2F(22k1 4 92k 4 7)),

The remaining part of proof is unification from part 1 but different
distance (D). u]

Theorem 4.2. The covering radius of the R-Simplex codes of type B are
given by

5.23]?*1 _ 6'2}\"*1 _ 2k+2
6 )

rp(SP) < 272k 4+ 22F71 okl _9) yp(SP) <

3 and

rep(SP) < 2371 g2k L,

I”B(S]E) <

Proof. From (4.2), Proposition [13] and Theorem 3.5 with different

distance(D), so

r(SE) < rp (2885 )+ (@7FSE ) = 20 (S5 ) + 2 T (SR )
< 2%rg(SB )+ 28 (SE ) = 2F 21, ghipgtigh gy
< 2rg(s§ ) + 2y (st ) = 2 2 4 2t 2t e )]
rp(SP) < 2kFL(gh 4 2%kl 4 9kl 4 ),
The Proof 2, 3 and 4 is use for 1 with apply different distance (D). o

5. MacDonald Codes of type a and type B in R

The g-ary MacDonald code M k,t(q) over the finite field F, is a unique

¢
{qq ;I , k, qk_1 - qt_l} linear code in which every non-zero codeword has

weight either qk_1 or qk_1 — qt_1 [17]. In [18], the author studied the
covering radius of MacDonald codes over a finite field. In fact, the author has
given many exact values for smaller dimension. In [14], authors have defined

the MacDonald codes over a ring using the generator matrices of the Simplex

codes. For 2 <t < k -1, let G ; be the matrix obtained from Gj by deleting

columns corresponding to the columns of G;*. That is,
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o _ o 0
G, = l:Gk N\ G_t“} (5.1)
and let G,E , be the matrix obtained from GIE by deleting columns
corresponding to the columns of GP . That is,

Gb - {GB \ i} (5.2)

k,t — k GB :
t

where [A \ B] denotes the matrix obtained from the matrix A by deleting the
columns of the matrix B and 0 is a (k —t)x 2%((k — ¢) x 2712 —1)). The
parameters in MacDonald codes of a-type and B-type is [4k — 4t k] and

[(2FT — 2ty (2% + 2¢71), k] code over R. Now, construct the MacDonald codes

over ZsR of type o and type B by using the generator matrix of the ZsR -

simplex codes of type o and type B. If 1 <¢ < k-1, let ®/%,t (resp., @% t) be
the matrix of MacDonald codes Mj , (resp., M 2 ;) with parametrs
(2273 +1)(2' —=1)] obtained from ©% (resp., ®]E) by deleting columns
corresponding to the columns of the matrix ®;* and 0,20 % (k —t) (resp., @f’
and 02¢ X (k = t)). Thatis, for k& > 1,

G%J =[m;(;’t ||m]%’t |G}(:’t ||G}?’t], (53)

22% (resp., 2¥) times in Oy, for k > 3,

where My, (resp., Gj ;) repeat
®2,t =[m,§’lf |...Im,§,t IG,E’t |...|G,§’t], (5.4)

where M,Et (resp., G,E ;) repeat 22k (vesp., Zk_l) times in @2 "

Theorem 5.1. For t < r < k,
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Lo (Mg ) <[220 — 227 (27 4 2F)] 4 [22Rrg (M ) + 2 (M)

(o) < . .
2. rE(Mk,t) s |: 3

2.k , 2 k , 4
+[2 rH(M](;t )+2 rE(M}(:,t ],

3k k+r r k
3 VB(Mz‘éﬁt)Sr'z +2 8$4.2 +3.2 )}

2.k , 2 k , 4
+ [2 rH(M}?,t ) + 2 T‘B(M;:’t ],
4. reg(Mg,) < [3230+1 — 2ktr(or 4 2.2F)]
2.k , 2 k , 4
+ [2 rH(M,(:,t ) + 2 rCE(M}(:’t )]
Proof. Use, the matrix (5.3), Proposition [13] and Theorem 3.5, thus

L (MF ) < (22 My 2) + (2P MY 2) = 22 (M ) + 20 (M P,
< 2% My ?) + 2 (M0 2),
< 22.k(2k _o) 4 2k(22.k _ 22.r) + 22'er(M/?,’t2) . zer(M]i,tz ’
r (M 2) < (292 = 287 @F - 2]+ (22 (M ?) + 28y (M )

The remaining part of proof follows in part 1.

Theorem 5.2. For t < r < k,

1. rL(MIE,t) < [23k+1 _ 2k+r71(2k+1 L9 _ 1)]
2.k , 2 k , 4
+ 2% Frg (MY )+ 25 (M) 1)
2. rg(M} ) < [6.2°F - 2"7(2* + 5.2" + 6) - 6.27*]

+ [ 2Py (M ) + 2P rg(MD )]
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3. rp(M}, )

- 6(23k _ 22k+7‘) + 4(23k _ 2k+27") + 3(23k—2 _ 2k+2(k—1)) + 9(2k+7‘—1 _ 22k+1)
h 6

+ (2% g (M 2) + 2Frp(M 1),
4. rep(MP ) < [2351 —2kvr(gh 4 om 1))
i , 2 , 4
+ [ 22 Frg (M 2) + 2 rop(M) )
Proof. Use, the matrix (5.4), Proposition [13] and Theorem 3.5, so

(M)} ) < (%F M ) + (220 M) )
< 22‘er(M/E,’t2) N 2er(M£,’t4)’
< 22‘er(M]§:t2) + 2er(M;§:t4),
< PHa o)+ M 1) 2 )]
+ 22'er(M,§:t2) + 2er(M]E:t4),
rL(M}E,’t2) < [2PFH1 _ ghtr(oh+l _gr 1y 4 BMTH(M}E,’E) N 2kTL(M}§,’t4)]~
The remaining part of proof is pursue in part 1. m|
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