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Abstract 

The present study focuses on the establishment of a new generalized parametric model for 

weighted cross entropy based upon discrete probability distribution along with their graphical 

presentation. 

1. Introduction 

Shannon [21], who was a communication engineer and had been working 

across noiseless or noisy channels, introduced information entropy. After this 

development, a lot of entropic measures with properties and appliances were 

elaborated and developed by researchers like Kapur ([11], [12]), Chakrabarti 

and Chakrabarty [5], Herremoes in [8], Nanda and Paul [17], Sharma and 

Taneja [22], Parkash, Thukral and Gandhi [18], Cincotta and Giordano [4], 

Majumdar and Jayachandran [16], Goel, Taneja and Kumar [5], Jamaati and 

Mehri [10], Khozani and Bonakdari [14], Sheng, Shi and Ralescu [23], etc. 
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Moreover, it is natural that the concept of distance which already 

prevalent in the field of mathematics should be extended for its applications 

to problems in other disciplines also. One of the most important directed 

divergence measures was given by Kullback and Leibler [15]. Kapur [13] also 

added the many directed divergence measures. Some other developments 

regarding the divergence measures have been made by Ararat, Hamel and 

Rudloff [1], Watson, Nieto-Barajas and Holmes [24], Pinelis [19], Sankaran, 

Sunoj and Nair [20], Huang, Yong and Hong [9], Handa, Narula and Gandhi 

[6]-[7], Avlogiaris, Micheas and Zografos [2] etc. 

2. The New Generalized Parametric Model for Weighted Cross 

Entropy 

A new weighted measure of cross entropy proposed through this 

mathematical model is recommended as: 
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Ignoring weights and taking limit as ,1  we get: 
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Therefore,  WQPD ;,  is an extension to Kullback-Leibler’s [15] cross 

entropy measure after attaching weights with the probability distribution. 

3. Properties of Cross Entropy Measure to be Convex 

(i)  WQPD ;,  is non-negative, 

i.e. 
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(ii)   ,0;,  WQPD  if and only if .QP   

(iii) For proving (2.1) as convex, we have 
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is definitely positive. 

So,  WQPD ;,  proved to be convex. 

Similarly, 
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is too positive definite. Therefore,  WQPD ;,  comes as convex. 

With the above given properties, the mathematical model introduced in 

(1.2.1) proves its validity to be a true parametric weighted cross entropy 

measure. Next, constructed Table 3.1 for the presentation of  WQPD ;,  

and obtained Figure 3.1 proving the convexity of the investigated measure. 

Table 3.1. Convexity of  WQPD ;,  

ip  iq  iw   WQPD ;,2   WQPD ;,2.2   WQPD ;,3.2   WQPD ;,4.2   WQPD ;,5.2  

0.1 0.5 1.0 0.159848254 .368064207 .36806421 0.368064 0.368064207 

0.2 0.5 1.025 0.085800684 0.197563376 0.19756338 0.197563 0.197563376 

0.3 0.5 1.075 0.038415125 0.088454094 0.08845409 0.088454 0.088454094 

0.4 0.5 1.1 0.009619217 0.022149065 0.02214906 0.022149 0.022149065 

0.5 0.5 1.125 0 0 0 0 0 

0.6 0.5 1.15 0.010056454 0.023155841 0.02315584 0.023156 0.023155841 

0.7 0.5 1.175 0.041988625 0.096682382 0.09668238 0.096682 0.096682382 

0.8 0.5 1.2 0.100449581 0.231293708 0.23129371 0.231294 0.231293708 

0.9 0.5 1.225 0.195814111 0.450878654 0.45087865 0.450879 0.450878654 

 

Figure 3.1. Convexity property of  WQPD ;, . 

Present figure clearly shows  WQPD ;,  to be convex. 
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4. Conclusion 

As it is required that the investigation of new generalized probabilistic 

and weighted measures of information is mandatory. So, we conclude that, by 

considering information measures that already exist, a new weighted 

measure including the measure of divergence is established. Along the 

parallel lines, more theoretic measures may be expanded. 
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