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Abstract 

This study developed an economic order quantity model for deteriorating items using price 

skimming strategy. The model charged a high selling price at the beginning and then lowered it 

over time. The optimum inventory level and the optimum time to offer discount were 

determined by maximizing the profit function. Results were illustrated using numerical 

examples and graphs which showed that the price deductions not only have an effect on the 

profit function but also the cycle time of the model.  

1. Introduction 

Price skimming is a pricing strategy in which a seller first sets a fairly 

high starting price for a product and then reduces the price over time. 

Usually the seller employs this strategy for new technologies, seasonal fruits 

and vegetables, newly launched fashion items, etc., because these products 

deteriorate over time. Seasonal fruits and vegetables decay over time for their 

biological effect like microorganisms. New technologies and fashion items also 

deteriorate or become outdated over time as competitors launch similar 

products, or the brand develops a new product. The price skimming strategy 

generates a high profit margin for the seller/producer as they set a high 

introductory price and then gradually reduces the price to attract the next 

and subsequent layers of the market. Researchers have developed many 

inventory models for deteriorating items [2], [3], [5], [6], [11], [13], [14], [15], 

[16], and [18].  
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Many researchers have adopted price to develop their inventory models 

[4], [8], [9], [10] and [12]. Adopting a price skimming strategy for the EOQ 

model for a deteriorating item will be a fine new addition to this field. This 

study develops an EOQ model with a price skimming strategy for 

deteriorating items like seasonal fruits, vegetables, newly launched fashion 

items, new technologies etc. The research article [1] developed a sustainable 

recycling process for an imperfect production system where the authors 

considered a fixed ratio of recyclable defective products and a piecewise 

constant demand rate of the non-defective items. The research article [7] 

developed an inventory model considering the optimal replenishment cycle 

time which addressed various inventory related issues like the partly 

imperfect quality items and deterioration after the inspection time. The 

authors also considered the permissible delay in payments which promoted 

their sales and reduced their on-hand stock level. The article [17] developed a 

two-level trade-credit model with a finite replenishment rate by considering 

an alternate due date of payment and limited storage capacity together. The 

authors developed 4 theorems to find the optimal solutions according to the 

cost-minimization strategy. 

2. Formulation of the Model 

 

Figure 1. The diagram of the stock over time. 

Production starts at the beginning when time .0t  During the time 

span  1,0 t  production stops when the stock level reaches the level .1S  

During time span  21, tt  the stock level decreases due to market demand of 

the product and deterioration and eventually becomes zero by the end of this 
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interval. This is the time when shortage occurs. To avoid high cost due to 

deterioration backlogging demand is a highly realistic consideration. When 

shortage level reaches 2S  at time 3tt   production starts again and stops at 

time Tt   when backlog is cleared. The diagram of variation within the 

inventory cycle is shown in Figure 1. The following notations and 

assumptions are used in this model: 

a)   tS  Inventory level at time  .0t  

b) pQ  Production rate 

c) pD  Demand rate .pp DQ    

d)   pf  Selling price. 

e) T  Duration of the inventory cycle. 

f) Shortages are allowed and fully backlogged. 

g) Lead time is zero. 

h)   deterioration rate, .10   

i) uC  Unit cost. 

j) sC  Set up cost per unit per unit time. 

k) hC  Carrying cost per unit per unit time. 

l) shC  Shortage Cost per unit per unit time. 

m) dC  Cost of a deteriorated unit.  

During    tStt ,,0 1  is governed by 

 
  ,pp DQtS

dt

tdS
   .00 S  (1)  

and during    tSttt ,, 21  is governed by  

 
    ,, 11 StSDtS

dt

tdS
p    02 tS  (2) 

The solutions are 
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neglecting higher order of . 

Also from (3) 

   1
1 12

1 



 tt

p eDS  

.1ln
1 1

12 

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
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
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


pD

S
tt  (5) 

During    tSttt ,, 32  is governed by 

 
  ,0, 2  tSD

dt

tdS
p    23 StS   (6) 

During    tSTtt ,,3  is governed by  

 
  ,, 23 StSDQ

dt

tdS
pp    0TS  (7) 

The solutions are 

 
   

     










TttSttDQ

tttttD
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323
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 (8) 

From (8) 

  232 SttDp   (9) 

2
2

3 t
D

S
t

p
  (10) 
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Note that the production occurs in continuous time spans  1,0 t  and 

 .,3 Tt  Therefore the lot size is  

 .3211 tTStSSL   (11) 

3. The Pricing Strategy 

Revenue      322 tTSpftDpfQ pREV    (12) 

where selling price 

     TTtpHppf ,0,1,    

Where p is the full price of unit item and  is the discount that producer 

offers and  tH  is a Heaviside function.  

 









t

t
tH

,0

,1
 

 

Figure 2. Effect of different price discounts on revenue. 

The price skimming strategy helps a producer quickly recover their costs 

of development and generates a high profit margin for the producer. Figure 2 

represents the relationship between revenue and discounted price when 

discounts were offered at .60  The red colored graph represents the 
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relation when %,10  the black graph represents when %,50  the green 

colored graph represents when %,70  and the purple colored graph 

represents when %.90  The more you increase the percentage of discount, 

the less you earn. The producer can offer the discounted price at any time 

 T,0  to attract the next and subsequent layers of the market. This study 

assumes that the time  T,0  is the time when the producer is done 

collecting the max profit to recover its costs.  

4. Related Costs 

Here are various costs associated with production process.  

Production Cost Luc SCP   by (11) (13) 

Total carrying cost  
2

0

t

hc dttSCH   

    





















2

3
1

2
1

32
ppppp

p
h

DQ

S

DQD

SQ
C  (14) 

Deterioration Cost      12111 ttDSStDQCD pppdc   

 ppp

p
d DQD

SQ
C




2

2
1

  by (4) and (5).  (15) 

Shortage Cost   
T

t
shc dttSCS

2

 

 ppp

p
sh DQD

SQ
C




2

2
2

 by (9) and (10).  (16) 

5. The Maximization of the Profit 

Average profit    TSDHPCQTQ ccccsREVPROFIT     by 

(12), (13), (14), (15), (16) 
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The objective of this study is to maximize the profit function 

 ., 1STQPROFIT  The necessary conditions for maximizing the profit are 

0




T

QPROFIT  and .0
1






S

QPROFIT  The solutions of 0




T

QPROFIT  and 

0
1






S

QPROFIT  will give us T  and .1
S  The values of T  and 

1S  will help 

us to evaluate the optimal value  1, STQPROFIT
  of the average profit 

provided they satisfy the sufficient condition for maximizing  1, STQPROFIT  

that is H is negative definite where H is the hessian matrix of  

 ., 1STQPROFIT  
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Hence the hessian matrix of  1, STQPROFIT  is negative definite. 

Theorem 5.2. There exist optimal solutions  TT  and  11 SS  which 
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Proof. Since the hessian matrix of  1, STQPROFIT  is negative definite, 
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Hence solving above two equations we get the optimal values  

., 11
  SSTT  

6. Numerical Examples 

Here are two examples. In example 1, the price of the product is less than 

that in example 2.  

Example 1. In this example, all parameters are assumed to be in 

appropriate units. ,10,200,15,165,10,01.0  dsushh CCCCC  
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,80pQ .200,35  pdp  The optimum inventory level and the optimum 

time were determined by maximizing the profit function. Solving 

0




T

QPROFIT  and 0
1






S

QPROFIT  we get T  and 
1S  where 

,06.740,70.36 1   ST  and .40.706,134
PROFITQ   

Example 2. Here  varies from 10% to 90%. To cover all the costs after 

offering a 90% discount we selected very high price, otherwise the producer 

will not have enough earning. Here, all parameters are assumed to be in 

appropriate units. ,500,000,4,000,2,400,01.0  sushh CCCC  

,20dC .000,5,350,800  pdQ pp Results have been illustrated by a 

graph in Figure 3. 

 

Figure 3. Effect of different price discounts on profit. 

7. Conclusion 

This study developed an Economic Order Quantity model with Price 

skimming strategy for deteriorating items. Since the price skimming pricing 

strategy sets a high introductory price, it helps a producer quickly recover its 

costs of development. It generates a high profit margin for the producer. Then 

reduces the price over time. Our model used a Heaviside function to 
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represent the price skimming strategy and showed a revenue vs time 

relationship graph (Figure 2) for various price discounts ranging from 0% to 

90%. It is clear from the graph that the more discount you offer the less you 

earn. The producer can decide what discount percentage they should offer 

and when they should offer it so that they can run the business smoothly. 

This study has a specific time  T,0  when discount was offered. In 

reality, the producer can set up . The time  could be set up before ,1t  or 

sometime between 1t  and 2t  or sometime between 2t  and 3t  or after .3t  If 

we offer a discount too early there is a chance that the earnings will not be 

enough to cover the costs associated with the production. Figure 3 showed a 

very interesting result. It showed that discounts not only affect the profit but 

also the cycle time. If we were to offer higher discounts the inventory cycle 

will end up too soon without giving us high profits. If we were to offer no 

discount at all or too little discount, that would give us maximum profit with 

a longer cycle time. In Figure 3, the red colored graph represents the relation 

between the profit function and time when %,90  the black graph 

represents relation between the profit function and time when %,70  the 

green colored graph represents the relation between the profit function and 

time when %,50  and the blue colored graph represents between the 

profit function and time when %.10  The purple colored graph represents 

the relation between the profit function and time when no discounts were 

offered at all. The more you increase the amount of discount the less you 

earn. In Figure 3, all the graphs show profit function when discounts were 

offered at  TT  and .11
 SS  That means the optimum inventory level and 

the optimum time to offer discount were determined by maximizing the profit 

function using example 2 parameters. Also this example finds that a high 

selling price earns maximum profit later than discounted selling price. Also 

high selling price takes longer optimal time to earn maximum profit compare 

to discounted selling price whereas discounted selling price completes the 

cycle faster than a selling price without any discount as the discounted selling 

price attracts more customers. This study could be extended in the future by 

incorporating price dependent deterioration as the products that deteriorates 

over time, sold at a very high price, are more likely to be wasted or become 

outdated.     
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