
 

Advances and Applications in Mathematical Sciences 
Volume 23, Issue 9, July 2024, Pages 769-794 
© 2024 Mili Publications, India 

 

2020 Mathematics Subject Classification: 65R20, 45B05, 65H10. 

Keywords: De Blasi measure, weak noncompactness method, mixed integral equation, 

Hammerstein integral equations, algebraic system of nonlinear type. 

Received July 17, 2024; Accepted July 28, 2024 

ASYMPTOTE BEHAVIOR OF A SOLUTION TO 

NONLINEAR MIXED INTEGRAL EQUATION AND ITS 

NUMERICAL APPLICATIONS AT FRACTIONAL TIMES 

F. M. ALHARBI 

Mathematics Department 

Faculty of Sciences 

Umm Al-Quraa University 

Makkah, 24227, Saudi Arabia 

E-mail: fmharbi@uqu.edu.sa  

Abstract 

In this study, we employ the weak noncompactness approach to analyze at least one 

solution of the nonlinear mixed integral equation (NMIE) in the space of position and time, 

    10,,01,01  TtTCL  using the De Blasi measure and Schauder fixed point. A 

nonlinear system of Hammerstein integral equations (NSHIEs) in  TL ,01 -space can be 

generated using the quadrature approach. It is discussed whether there is at least one solution 

for (NSHIEs). By using the Collocation method and the Galerkin method, the (NSHIEs), in 

each case, reduced to an algebraic system of nonlinear type (NAS). Matlab 2023 software is used 

to compute and plot the solutions at specific fractional times.  

1. Introduction 

Many integral equations (IEs) of various types contain mathematical 

models that describe the general form of the problem that appears in many 

different fields of applied sciences. For some of them, see Jan et al. [1], 

Mikula [2], Nasr et al. [3], Basim [4] and Alharbi and Alhindi [5]. That is why 

previous and current authors were interested in developing some methods to 

solve various types of IEs. We refer to some methods, such as the Collocation 

method in Mirzaee, and Samadyar [6] and, the Degenerate kernel method in 

Nasr and Abdel-Aty [3]. Toeplitz matrix method in Basseem and Alalyani [7]. 
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The collocation technique was applied by Diego and Lima in [8] to discuss 

numerically the solution of IE with a weakly singular kernel. In [9], 

Baksheesh used the Galerkin method to solve an IE of Volterra type with a 

convolution kernel. Mirzaee and Hoseini [10] used the Fibonacci Collocation 

method to solve an IE of the Volterra-Fredholm  FV   second type with a 

continuous kernel. In [11] Al-Bugami applied the Collocation and Galerkin 

method for solving contact problems in the elastic material. In [12], He et al. 

developed block-pulse functions to solve an IE of VF type. In [13], Abd-

Elhameed used Chebyshev polynomials of the sixth type to obtain 

numerically the solution of Burgers equation in one-dimension. In [14], 

Matoog et al., used the orthogonal polynomials method in of Chebyshev 

polynomials form to solve MIE in time and position. In [15], Brezinski, et al. 

discussed the numerical solution of HIEs using Extrapolation methods. In 

[16], Al-Bugame et al. used Chebyshev polynomials and Bernoulli 

polynomials for solving numerically nonlinear mixed partial integro 

differential equations. Using the modified least square method, Majouti et al. 

[17] obtained the solution of N FIE in numerical form. In [18], Jebreen used 

the Multi-wavelets Galerkin method to compute a numerical solution for 

VFIE. More different methods and its solution can be found in [19-22]. On 

the other side, many authors in the filled of (IEs) focused on understanding 

the properties of the solutions of (IEs). This kinds of study provides a deep 

understanding of behavior for modifying systems, see [23, 24, 25].  

Assume the NMIE of second type,  

            
t

dvdvvvuttuqtu
0

1

0
,,,,,,,  (1) 

Here, the two known functions     tututuq ,,,,,   belong to the space 

    .10,,0,01  TtTCTL  The know functions  vu,  and   ,t  

represent the continuous kernel of position and time, respectively. While, 

 tu,  is unknown function represents the solution of Eq.(1) that will be 

obtained.  is a constant that has many physical meaning and  is a constant 

that defines the type of IE. The goal here is to prove the existence of at least 

one solution of MIE (1) by using the method of weak noncompactness and 

Shauder theorem. Then, a suitable quadrature method is used to reduce the 
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MIE to a set of Hammerstein integral equations SHIEs with continuous 

kernels. Therefore, the existence of at least one solution for SHIEs is 

considered. By using the Collocation method and the Galerkin method, the 

SHIEs reduced to the nonlinear algebraic system NAS which is solved 

numerically. Finally, numerical results are calculated and the error estimate 

in each case is computed.  

2. The Strategy of Finding at Least a Solution 

The Schauder theorem is considered a source to prove that there exists at 

least one solution to Eq.(1). Therefore, we state the following basic 

definitions, [25]  

Definition 1. (measure of weak noncompactness)  

Consider   ,: RmE  is a measurable function of weak 

noncompactness with kernel  ,,ker wCn  if it satisfies the following 

conditions:  

1.   .0  XX  

2.    .XX   

3.    .YXYX   

4.    .XconX   

5.         .11 YXYX   

6. If w
nnn XXmX  ,  and nn XX 1  for ,2,1n  and if 

  ,0lim 


n
n

X  then, .1  
 nn XX   

Definition 2. (De Blas measure). The weak noncompactness  ,X  

   :0inf  rX  there exists a weakly comact subset W of E such that 

.rBWX   

Definition 3. The convenient of the function  X  in the space  1,01L  

was given by,  
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       









































 


D

Xx

DmDdttXX ,1,0:supsuplim
0

 

  Dm  the Lebesgues measure of subset D.  

Before proving the principle theorem, we consider the integral operator 

form,  

       tuZtuqtuL ,,,   (2) 

where,  

     .,,,, tututu   

        
1

0
,,,,, dvuvvutu  

           
1

0
.,,,,,,,, dvdvvvvuttuZ  (3) 

Here,  is a superposition operator generated by the function , while  

and Z generated by  and  respectively. Then assume the assumptions:  

i) The functions        1,,01,0,,, 1  TTCLtutu  satisfies 

Caratheodory and growth assumptions. i.e. we have a function 

     TCLtuA ,01,0, 1   and constant 0b  such that,   

          constantis,,,,,,,, AAAtubtuAbtuAtutu   

Moreover, for every positive ,1   we can find    in which,  

       


t

Tt
duduuuu

0

1

0

121
0

,,,,,,,max  such that 

  21  

ii) The kernel  satisfies    ,, vu  is constant.  

iii) The kernel term  for all value of  satisfies, 

   .constantis,  SSt   
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iv)      TCLtuq ,01,0, 1   and satisfies,  

  .,max
0

1

00  





t

Tt
Ndduuqq  

Theorem 1. By considering the pervious conditions, Eq.(1) has at least 

one solution in    TCL ,01,01   under one solution in    TCL ,01,01   

under the assumption,  

. TSb  (4) 

Lemma 1. Under the assumptions (i)-(iv), the integral operator L of Eq.(2) 

maps     1,,01,01  TTCL  into itself continuously.  

Proof. First, let   rBtu  ,  and write Eq.(2) in the normal form,  

            
t

dvdvvvuttuqtuL
0

1

0
,,,,,,,  

(5) 

applying Hölder inequality and using the conditions (i)-(iv), we get 

















t

Tt
dtTTSAN

TbnS
L

00
max,,  (6) 

the last inequality shows that, the operator q maps the ball 

   TCLBr ,01,011
  into itself, where .1

TSb
r




   

Since ,01 r  therefore, . TSb    

Also, Eq. (6) leads to the boundedness of L  where  

.





TSb
L  (7) 

Lemma 2. The integral operator L of Eq.(2) is continuous in 

    .1,,01,01  TTCL    

Proof. Let  tu,1  and  tu,2  be two functions in ,
1r

B  such that 
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     
 TCL ,01,021

1
 for every ,0  then form Eq.(2) we find  

            

t

dvduvvuttuLtuL

0

1

0

21 ,,,,,,,  

the above inequality after applying Hölder inequality and then the conditions 

(i)-(iii) takes the form  

         


/,,, 1,01,021
1

TStuLtuL
TCL

 (8) 

hence the operator L is a continuous operator in .
1r

B   

Lemma 3. Under the weak noncompactness measure , the operator L is a 

contraction.  

Proof. Let 0,
1

 rBX  and    ,,01,01 TCLY   such that 

  m  then for any   Xtu  ,  we have,  

  
 


 dudttuL

Tt
,max

0
 

  
 


 dudttuq

Tt
,max

0
 

       dudtdvdvvvut
t

Tt    
 




0

1

00
,,,,,max  

after using Lebesgue integral [ ]  

    
 




t

Tt
dudtdvdua

0

1

000
,0,maxlim  

    
 




t

Tt
dudttuf

0

1

000
0,maxlim  

and the definition of De Blasi measure at weak noncompactness,  can be 

written by:  
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    1,  TSbXL  (9) 

     


CL
X

1
 

then L is contraction operator with respect to weak noncompactness .  

Lemma 4.  


m rBY
1

 is non empty, closed, bounded convex and 

relatively weak compact.  

Proof. Let   where  
1r

LBConv  denoted the smallest closed convex set 

containing ,
1r

LB  i.e.  
11 rr LBConvLB   and since ,

11 rr BLB   

,:
11 rr BBL   then we obtain   ,

11 rr BLBConv   then we have .
11

1
rr

BB   

Similarly, we have  12

11 rr
LBConvB   and   11

11 rr
BLBConv   ,12

11 rr
BB   

then  23

11 rr
LBConvB   and   2322

1111 rrrr
BBBLBConv   and so on to 

have a sequence which is decreasing, bounded, convex, closed subset m
r

B
1

 of  

1r
B  such that .,

11
 mBLB m

r
m
r

  Using the properties of the De Blasi 

measure of weak noncompactness , we get  m
r

m
r

LBconvB
11

1   

        .
1111

11 m
r

m
r

m
r

m
r

LBBLBconvB    Hence,  1

1

 m
r

B   

  .,
1

 mBs m
r

 Repeat the process m times, we get 

    .,
11

11   mBsB r
mm

r
 Since 1s  then   .0lim

1




m
rm

B  

This implies that  


m rBY
1

 is a set nonempty, closed, bounded, 

convex and relatively weakly compact subset of .
1r

B  It is also clear that 

,YLY   as   .
1111

YLYBBLBLB
m rm r

m
r

m
r


  

 The 

lemma is proved.  

Lemma 5. For a subset Y of ,
1r

B  we have LY is relatively compact.  

Proof. Let   tun ,  be a sequences in Y and ,0  then by using 
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Dragoni theorem, there exist a closed measurable subset    

   ,,01,01 TCL   such that         TT
c

vm
,0,01,0

,,



   

and  1,0
  are uniformly continuous.  

Let 

          
t

nn dvdvvvuttuQ
0

1

0
,,,,,,  (10) 

then if ,,, 21   utt  we have  

   21 ,, tuQtu nn   

          

1

0

1

0

21 ,,,,,,

t

n dvdvvvutt  

        

2

0

1

0

2 ,,,,,

t

n dvdvvvut  

since    Ytun  ,  is bounded, then   tun ,  is in the space 

   .,01,01 TCL   Therefore,  nQ  is a sequence of an equicontinuous and 

uniformly bounded function in  .0
 C   Hence, for   tu ,  we 

get   .,max EtuQn
n




 Then 
 nQ  are uniformly continuous, so 

  tuL n ,  is a sequence of an equicontinuous and uniformly bounded 

function in  .0
 C  By using Ascoli-Arzela theorem [26], we deduce that 

LY is relatively compact subset of   0C  then   tuL n ,  is Cauchy 

sequence in  .0
 C   

Since LY is relatively compact subset of  ,0
 C  then  L  is 

uniformly integrable i.e. for a given ,0  there exist ,0  such that,  

    .,
4

,maxsup
0




 
  




mdudttuL
Tt

 (11) 
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 Choosing r  with   , 
c

m  we have  

     


t

nn
Tt

dudttuLtuL
0

1

00
,,max

21
 

    
 




C C

dudttuLtuL nn
Tt

,,max
210

 

    
 




C C

dudttuLtuL nn
Tt

,,max
210

 

since  nL  is Cauchy sequence in  ,0
 C  we get  

    





  22
,,max

0

1

00 21

t

nn
Tt

dudttuLtuL  (12) 

hence for large 21 , nn  we deduce that  nL  is Cauchy sequence in 

   ,,01,01 TCL   therefore  nL  is relatively compact. In addition, LY is 

relatively compact in the space    .,01,01 TCL   Finally, form the previous 

lemma and after using Schauder fixed point theorem we deduce that L has at 

least one fixed point      ,,01,0, 1 TCLtu   which is the solution of 

Eq.(1).  

3. System of Hammerstein Integral Equations (SHIEs) 

To find SHIEs of the second type, a quadratic numerical method is 

utilized in this section.  

For this, dividing the interval  T,0  into s sub-intervals, 

Tttt s  100  where .,,2,1,0,,, Sjittt ji   Hence, 

the integral term of Eq.(1) becomes  

        

t

dvdvvvut

0

1

0

,,,,,  

         





t

j

p
ijjjij phhOdvtvtvvuttW

0

1

0

1 .0,0,,,,,,  (13) 
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where ijjjj
mj

i httaah ,,max 1
0

 


 the step size of integration and jW  

are the weights such that ijaWj ,0,2   and ,0, ijaWj   the 

value of i and p depend on the number of derivative of   ,t  with respect to t 

for all  .,0 T  Hence,  1p
i

hO  is the order of sum of errors of the method.  

After using Eq.(13), Eq.(1) yields a value that doesn’t include  ,1p
i

hO  

         




i

j

jjijjii SidvvvvuWuqu

0

1

0

,,2,1,0,,,   (14) 

where,  

               .,,,,,,,,,, vvtvtvttuqtuqutu jjjjijjiiiii   

The formula (14) represents system of  1s  HIEs in position and its 

solution depends on the function  ,uqi  the kernel  vu,  and the degree of 

  ., vv jj    

Lemma 6. The estimate local error jsR ,  of the quadrature numerical 

method is determined by the relation,  

         

t

js dvdvvvvutR

0

1

0

, ,,,,,,,  

     SidvvvvuW

i

j

jjijj ,,2,1,0,,,

0

1

0
 



 (15) 

4. The study of exist at least a solution of SHIEs 

The existence of at least a solution of SHIEs (14) of the second kind, will 

be proved according to the Schauder fixed point theorem in the Banach space 

 .1,01L   

For this aim write Eq.(14) in the operator form 
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      ,
1

1 uuqu iii 


 HH  

       




i

j

jjijji idvvvvuWu

0

1

0

1 ,,,H  (16) 

then assume the assumptions:  

1. The given function   vv jj  ,  satisfies the two assumptions:  

1.1. For all integers        .,,, iiiii Aubuuui XX     

1.2. For every positive   21 EE  we can find   E  in which,  

1.3.       ,,,
1

0
121
 Eduuuuu iiii  such that   E11 ii   

2.  


i

j ijj SW
0

.    

3.  


1

0
.Nduuqi  

Theorem 2. In view of condition (i) of theorem 1 and conditions (1)-(3) the 

SHIEs (14) have at least a solution in  1,01L  under the relation,  

 Sb  

Lemma 7. Under the conditions (ii) of theorem 1 and conditions (1)-(2), 

the operator H  maps the ball 
2r

B  into itself.  

Proof. Let          21,0
,:,

122
ruRuBBu

Liirri   is constant 

be nonempty, closed, bounded and convex subset.  

Define the norm of the operator  uiH  in  1,01L  by  

      

1

0

1,0
,

1
iduuu iLi HH  (17) 

In the light of Eq.(16), after applying Hölder inequality and integrating, 

we obtain 
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    





1

0

1

0

1
duuqduu iiH  

    




    

i

j
jjijj dvvvdudvvuW

0

1

0

1

0

1

0
,,  

with the aid of above conditions, we get 

      .,,
1,01 





 Sb

gbANugu
EiLi FFH  

(18) 

hence from inequality (18), the operator H maps 
2r

B  into itself, where  

.2 


Sb
r

F
 (19) 

since 02 r  then , Sb  therefore we have .1g  Moreover, the 

inequality (18) leads to the boundedness of H .  

Lemma 8. If the assumption (ii) of theorem 1, and assumptions (1), (2) are 

satisfied then H  is continuous in .
2r

B   

Proof. Let  ui1  and  ui2  be two functions in ,
2r

B  and from Eq.(16) 

we find  

   uu ii 21  HH  

         








i

j

jjjjijj dvvvvvvuW

0

1

0
21 ,,,  

applying Hölder inequality and then using the conditions (1) and (ii) of 

theorem 1 to get 

        SEuu
Lii 11,021 ,

1
EEHH  (20) 

the last inequality shows that the operator  H  is continuous operator in .
2r

B   

Lemma 9. The operator H  is compact in the ball .
2r

B   
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Proof. Since,  
22

,1,01 rr BLB   is bounded in  1[0,1]. Therefore 
2r

BH  

in  1,01L  is bounded. Then we will show that      uu ini  HH  in 

 .1,01L  Let   ,
2ri Bu   then  

              
1

0
1,01

duuuuu iniLini HHHH  

      dvduuv
n

nu

u
ini 




1

0

1
HH  (21) 

since,  

            .0lim0
1

lim
1,0

00 1





Lini

nu

u n
ini

n
dvuv

n
HHHH  

This implies that,    ini  HH  uniformly as .0n  Then 
2r

BH  is 

relatively compact. Since 
2r

B  is bounded, hence H  is compact operator.  

According to previous lemmas 8 and 9, the operator defined by Eq.(18) is 

continuous and compact, and has the ability to map a closed convex set 
2r

B  

into itself. Hence by theorem fixed point of Schauder, the operator H  has at 

least one fixed point in ,
2r

B  therefore Eq.(14) has at least one solution 

   .1,01Lui   Hence the proof of theorem 2 is obtained. Also, for ,s  

then  

              




s

j

t

jjijj dvdvvvutdvvvvuW

0

1

0 0

1

0

,,,,,,,  

Thus, the solution of SHIEs (14) becomes the solution of Eq.(1). 14  

Theorem 3. Under the conditions of theorem 2, and if, in the space 

 1,01L  the sequence      sis uqP   converges uniformly to the function 

  ,uqP i  then the sequence of functions      sis uXX   of Eq.(14) 

converges uniformly to the solution   uXX i  of Eq.(14) in the same space.  

Proof. From Eq.(14), we write  
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          siisii uququu 



1

 

           





1

0

1

0
,,,

i

j siiiiijj dvvvuvvuWW  

After applying Hölder inequality, integrating both sides and using the 

conditions of theorem 2, we get  

    


  /,
1

11,01,0 11
SPP

LsLs EE   (22)  

Since,   0
1,01


LsPP as ,s  then s  uniformly when 

s  in the space  .1,01L   

5. Numerical Methods 

The Collocation method and the Galerkin method are used to solve SHIEs 

with continuous kernel in this section.  

5.1 The Collocation method  

Here, we use the Collocation method to obtain the numerical solution of 

SHIEs of the second kind with continuous kernel. The idea of this method is 

to transform it to SHIEs in terms of the linear combination coefficients 

appearing in the representation of the solution  itu,  in Eq. (14) by a 

partial sum,  

     




m

k

kiki utctuG

0

,    (23) 

of 1m  linearly independent functions      uuu m ,,, 10   on the 

interval  ,1,0  therefore, we have  

        




t

j

jijijjii dvvvGvvuWquG

0

1

0
,,,  

       sitctctcuE imii ,,2,1,0,,,,, 10     (24)  
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Since, the error in Eq.(25) vanishes at 1m  point muuu ,,, 10   then, 

we get 

            
  
















m

k

i

j

m

k

kjkjijjkik dvvtcvvuWutc

0 0

1

0 0

,,   

.0,0 mnsi    (25) 

5.2. Galerkin method  

In this method the error in Eq.(14) is orthogonal to 1m  given linear 

independent functions on      uGuGuG m,,, 10   the interval  .1,0  Then 

From the definition of orthogonally on       imii tctctcuE ,,,, 10   in 

Eq.(14), we get  

                




























  

1

0 0 0

1

0 0

,, dudvvtcvvuWutcuG

m

k

i

j

m

k

kjkjijjkikn  

    
1

0
.0,0, mnsiduuquG in  

6. Numerical Applications 

The Collocation method and Galerkin method are used to discuss the 

numerical solution for Eq.(1) with continuous kernels. using Mable 22 

program. Studying the solution included two aspects regarding the difference 

in the value of time.   

Application 1. Consider the following NMIE,  

       
t

Ttdvdvvtuqtu
0

1

0

22 ,10,,cos01.0,,  

the exact solution is    .exp, 2 xttu   
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Figure 1. The relation between the collocation approximate at 01.0T  and 

the exact solution. 

 

Figure 2. The relation between the Galerkin approximate at 01.0T  and 

the exact solution.  

 

Figure 3. The Collocation estimating error at 01.0T  
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Figure 4. The Galerkin estimating error at 01.0T  

 

Figure 5. The relation between the collocation approximate at 5.0T  ant 

the exact solution. 

 

Figure 6. The relation between the Galerkin approximate at 5.0T  and 

the exact solution. 
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Figure 7. The Collocation estimating error at 5.0T  

 

Figure 8. The Galerkin estimating error at 5.0T  

 

Figure 9. The relation between the collocation approximate at 9.0T  and 

the exact solution.  
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Figure 10. The relation between the Galerkin approximate at 9.0T  and 

the exact solution. 

 

Figure 11. The Collocation estimating error at 9.0T  

 

Figure 12. The Galerkin estimating error at 9.0T  

Application 2. Consider the NMIE,  

       
t

Ttdvdvvtuqtu
0

1

0

22 ,10,,cos01.0,,  

exact solution is,   .sin, 2 uttu     
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Figure 13. The relation between the collocation approximate at 01.0T  

and the exact solution. 

 

Figure 14. The relation between the Galerkin approximate at 01.0T  and 

the exact solution. 

 

Figure 15. The Collocation estimating error at 01.0T  
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Figure 16. The Galerkin estimating error at 01.0T  

 

Figure 17. The relation between the collocation approximate at 5.0T  and 

the exact solution. 

 

Figure 18. The relation between the Galerkin approximate at 5.0T  and 

the exact solution. 
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Figure 19. The Collocation estimating error at 5.0T  

 

Figure 20. The Galerkin estimating error at 5.0T  

 

Figure 21. The relation between the collocation approximate at 9.0T  and 

the exact solution. 
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Figure 22. The relation between the Galerkin approximate at 9.0T  and 

the exact solution.   

 

Figure 23. The Collocation estimating error at 9.0T  

 

Figure 24. The Galerkin estimating error at 9.0T  

Conclusion 

The research is a completed study that includes a theoretical side and is 

supported by mathematical applications. This work gives a sophisticated 
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study that focuses on the properties and stability of the solution of the 

nonlinear mixed integral equation so as to ensure that there is at least a 

single solution to it and a deep understanding of the way to behave with 

modified systems from a wide range of scientific and engineering disciplines. 

We focus on the study of nonlinear mixed-integral equations. The quadratic 

numerical method is a powerful mathematical tool that allows us to 

transform nonlinear mixed integral equations in position and time into a 

system of nonlinear integral equations in position only. This technique 

enables us to handle the integral equations more efficiently. The collocation 

method and the Galerkin method are numerical methods used to solve the 

system of nonlinear integral equations with high accuracy and computational 

efficiency. Using the two methods, we compute and plot the error estimates 

associated with the proposed integral equation. We can establish the 

following:  

 The absolute value of the error increases as the time value 

10,  TT  increases in both study cases for the two methods used in 

the two applications. 

 The error of the Galerkin method is close to the error of the collocation 

method.  
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