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Abstract

In this study, we employ the weak noncompactness approach to analyze at least one
solution of the nonlinear mixed integral equation (NMIE) in the space of position and time,
L[0,1]x C[0,T], 0 <t <T <1 using the De Blasi measure and Schauder fixed point. A
nonlinear system of Hammerstein integral equations (NSHIEs) in L;[0, 7']-space can be

generated using the quadrature approach. It is discussed whether there is at least one solution
for (NSHIEs). By using the Collocation method and the Galerkin method, the (NSHIESs), in
each case, reduced to an algebraic system of nonlinear type (NAS). Matlab 2023 software is used
to compute and plot the solutions at specific fractional times.

1. Introduction

Many integral equations (IEs) of various types contain mathematical
models that describe the general form of the problem that appears in many
different fields of applied sciences. For some of them, see Jan et al. [1],
Mikula [2], Nasr et al. [3], Basim [4] and Alharbi and Alhindi [5]. That is why
previous and current authors were interested in developing some methods to
solve various types of IEs. We refer to some methods, such as the Collocation
method in Mirzaee, and Samadyar [6] and, the Degenerate kernel method in
Nasr and Abdel-Aty [3]. Toeplitz matrix method in Basseem and Alalyani [7].
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The collocation technique was applied by Diego and Lima in [8] to discuss
numerically the solution of IE with a weakly singular kernel. In [9],
Baksheesh used the Galerkin method to solve an IE of Volterra type with a
convolution kernel. Mirzaee and Hoseini [10] used the Fibonacci Collocation
method to solve an IE of the Volterra-Fredholm (V — F) second type with a

continuous kernel. In [11] Al-Bugami applied the Collocation and Galerkin
method for solving contact problems in the elastic material. In [12], He et al.
developed block-pulse functions to solve an IE of VF type. In [13], Abd-
Elhameed used Chebyshev polynomials of the sixth type to obtain
numerically the solution of Burgers equation in one-dimension. In [14],
Matoog et al., used the orthogonal polynomials method in of Chebyshev
polynomials form to solve MIE in time and position. In [15], Brezinski, et al.
discussed the numerical solution of HIEs using Extrapolation methods. In
[16], Al-Bugame et al. used Chebyshev polynomials and Bernoulli
polynomials for solving numerically nonlinear mixed partial integro
differential equations. Using the modified least square method, Majouti et al.
[17] obtained the solution of N FIE in numerical form. In [18], Jebreen used
the Multi-wavelets Galerkin method to compute a numerical solution for
VFIE. More different methods and its solution can be found in [19-22]. On
the other side, many authors in the filled of (IEs) focused on understanding
the properties of the solutions of (IEs). This kinds of study provides a deep
understanding of behavior for modifying systems, see [23, 24, 25].

Assume the NMIE of second type,
t el
b ¢) = (s )+ [ [ 8l Dol 0)ol, . (0, 7)dvde M
0Jo

Here, the two known functions q(u, ¢), ¢(u, ¢, x(u, t)) belong to the space
L]0, T]xC[0, T], 0 <¢ <T <1. The know functions o(u, v) and &(t, 1)
represent the continuous kernel of position and time, respectively. While,
%(u, t) is unknown function represents the solution of Eq.(1) that will be

obtained. A is a constant that has many physical meaning and p is a constant
that defines the type of IE. The goal here is to prove the existence of at least
one solution of MIE (1) by using the method of weak noncompactness and

Shauder theorem. Then, a suitable quadrature method is used to reduce the
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MIE to a set of Hammerstein integral equations SHIEs with continuous
kernels. Therefore, the existence of at least one solution for SHIEs is
considered. By using the Collocation method and the Galerkin method, the
SHIEs reduced to the nonlinear algebraic system NAS which is solved
numerically. Finally, numerical results are calculated and the error estimate
in each case is computed.

2. The Strategy of Finding at Least a Solution

The Schauder theorem is considered a source to prove that there exists at
least one solution to Eq.(1). Therefore, we state the following basic
definitions, [25]

Definition 1. (measure of weak noncompactness)

Consider y:mp — R',y is a measurable function of weak

noncompactness with kernel p(kery = p, pCn"), if it satisfies the following

conditions:

L.yX)=0< X ep.

2. v(X) = y(X).

3. X cY = y(X)<y(®)

4. y(conX) = y(X).

5. YAX + (1 -1)Y) < (X)) + (1 — apy(Y).

6. If X, em X, = XY and X, c X, for n=12 ... and if
lim y(X,) = 0, then, X, = N1 X,, # ¢.
n—>oo

Definition 2. (De Blas measure). The weak noncompactness B(X),

B(X) = inf{r > 0 : there exists a weakly comact subset W of E such that
X c W+ B_r}.

Definition 3. The convenient of the function B(X) in the space L;[0, 1]

was given by,
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B(X) = lim {sup {sup I| X(t)|dt : D < [0, 1], m(D) e a}}}
e0 |xeX 7

m(D) — the Lebesgues measure of subset D.

Before proving the principle theorem, we consider the integral operator

form,
nL(x(u, t)) = q(u, t) + LZQD(x(u, 1)) )
where,

(D(X(u’ t)) = (P(u’ ¢ X(u’ t))

1
QD((u, 1)) = j ol Vo, % 7, D)

ZQd(x(u, t)) = J-Ol E(t, Do(u, v)o(, 1, 1V, T, %V, T)))dUdr. 3)

Here, @ is a superposition operator generated by the function ¢, while Q

and Z generated by o and & respectively. Then assume the assumptions:

i) The functions o(u,t, x(u, t)) € L;[0,1]x C[0, T], T <1 satisfies

Caratheodory and growth assumptions. i.e. we have a function
A(u, t) € L1[0, 1] x C[0, T'] and constant & > 0 such that,

| o, t, x(u, t))| < Au, t)+ ] A(u, )| + | 7(u, t)|, | A|| = A, (A is constant)

Moreover, for every positive g, < g, we can find 3(¢) in which,

t 1

0<t< ’ :(12 ? dltdc € SuC]I

%1 = %2 || < 8(e)
i) The kernel o satisfies | o(w, v)| = n, n is constant.

i) The kernel term & for all wvalue of 1t satisfies,

|, 1) < S™ (S is constant).
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iv) q(u, t) € L1]0, 1] x C[0, T] and satisfies,

tpel
lal= max [ | |a(u 0)|duds = N™.
0<t<T J0JO

Theorem 1. By considering the pervious conditions, Eq.(1) has at least
one solution in L;[0,1]x C[0, T| under one solution in L0, 1]x C[0, T]

under the assumption,
2 bnS T < [l @)

Lemma 1. Under the assumptions (1)-(iv), the integral operator L of Eq.(2)
maps Li[0, 1]x C[0, T], T < 1 into itself continuously.

Proof. First, let y(u, t) € B, and write Eq.(2) in the normal form,

t el
il 26 01 < Nt 01 2] 1 156 91 ot 0. 5 0 ) v

(6))
applying Holder inequality and using the conditions (1)-(iv), we get
- B ;
I Ly | < L+M||X||, y=N+|A|AST, T = maxj dt (6
|nl lul 0<t<T J 0

the last inequality shows that, the operator q maps the ball

B, < L]0, 1]x C[0, T] into itself, where r, = S C—
w—|r|bnS™T

Since r; > 0, therefore, | A |nNS™T < |pn|.
Also, Eq. (6) leads to the boundedness of Ly where

| A |onS™T

| Ly || <
[l

I - (7

Lemma 2. The integral operator L of Eq.(2) is continuous in
L0,1]x C[0, T], T < 1.

Proof. Let y;(u, t) and y3(u, t) be two functions in B,, such that
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[ x1 — % ”LI[O 1xclo, 7] < 3(¢) for every € > 0, then form Eq.(2) we find

t1
[l oo )= Lora e, ) < 1] [ 9) || ol 0dofo, = o, ) ldode
00

the above inequality after applying Holder inequality and then the conditions
(1)-(111) takes the form

I Loxa (. 8) = Lo (s 8) o, 13xcqo, 77 < & & = [ A IS Ter /| ®)
hence the operator L is a continuous operator in B, .

Lemma 3. Under the weak noncompactness measure 3, the operator L is a
contraction.

Proof. Let X c B,,c>0 and Y x® c I4]0,1]xC[0, T'], such that

m(Y x @) < o then for any y(u, ¢) € X we have,

| p| max IJ| Ly(u, t) |dudt
0st=T o

< max II| q(u, t) |dudt
0<t<T
Yo

0<t<T

+ max I” I; I;| &, 1) || olu, v)e(, 1, %, 1)) |dvdr |dudt
YO

after using Lebesgue integral [ ]

c—0 0<t<T

tol
lim max III I a(u, t)dvdtdudt = 0,
0Jdo
Y0

t el
lim max IJJ. I | f(w, t)|dudt = 0
-0 0<t<T 1o 040

and the definition of De Blasi measure at weak noncompactness,  can be
written by:
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B(Ly) < of(X), o = |[A[onS™T/[p| <1 )
BX) =% Iz, (ryxcro)
then L is contraction operator with respect to weak noncompactness f.
Lemma 4. Y = ﬂmeN B,«1 is non empty, closed, bounded convex and

relatively weak compact.

Proof. Let where C’onv(LB,l) denoted the smallest closed convex set
containing  LB,, ie. LB, c Conv(LB,) and since LB, c B,,
L: B, — B,, then we obtain Conv(LB, ) < B, , then we have B < B, .

1 i i i n il
Similarly, we have B2 = Conv(LB') and Conv(LB)< B! — B? < B!,
i i i i n i
then B3 = Conv(LB?) and Conv(LB%)c B> - B> < B2 and so on to
n n n n n n
have a sequence which is decreasing, bounded, convex, closed subset BZL of
B, such that LB;Z‘ c B;’:, m e N. Using the properties of the De Blasi
measure of weak noncompactness B, we get BZHl = conv(LB;ln)
- B(BZHI) = B(conv(LBZl ) = B(Bg”l) = B(LB;I"). Hence, B(BZ”I)
< SB(BZL ), m € N. Repeat the process m  times, we  get

B(Bg”l) < s’”HB(Br1 ), m € N. Since s <1 then lim B(B:I”) =0.

m-—oo
This implies that Y = nmeN Br1 1s a set nonempty, closed, bounded,
convex and relatively weakly compact subset of Brl. It 1s also clear that
m m
LY Y, as LB c B' = L(ﬂmeNBrl) c ﬂmeN B, = LY cY. The
lemma 1s proved.

Lemma 5. For a subset Y of Br1 , we have LY is relatively compact.

Proof. Let {y,(u, t)} be a sequences in Y and ¢ > 0, then by using
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Dragoni theorem, there exist a closed measurable subset Y. x O,
< L]0, 1]x C[0, T}, such that m((Y.x©.))<g, 1| [0, 1]<[0, T<R > ¥ |®gx[0,T]

and o] ¥.x[0,1] are uniformly continuous.

Let

t el
Que.t) = [ [ 2. ol v)olv. 7. 1,0, ©)dvds (10)
then if ¢, 15 € ®,, Vu € Y., we have

| 0, (u, t1) - Qy(u, t3) |

t 1
< j j | &ty 7) - Elta, ) || o, v) || 00, T, 7, (v, 7)) |duds
00

ty 1

+ [ [t o) [ o v) |l o0, 7 1,0, ) |dvds
00

since {x,(,?)} cY is bounded, then {x,(u,t)} is in the space

Li[0, 1] x C[0, T]. Therefore, {@,} is a sequence of an equicontinuous and
uniformly bounded function in CO(YG x©.). Hence, for ue Y, te®. we

get max|@Q,(u,t)|=E. Then @, , are uniformly continuous, so
neN s

{Ly,(u, t)} is a sequence of an equicontinuous and uniformly bounded

function in C° (Yg x O, ). By using Ascoli-Arzela theorem [26], we deduce that
LY is relatively compact subset of CO(Yg x @.) then {Ly,(u, t)} is Cauchy

sequence in CO(Yg x0.).

Since LY is relatively compact subset of CO(Yg x @), then {Ly} is

uniformly integrable i.e. for a given ¢ > 0, there exist 6 > 0, such that,

sup max J. J. | Ly(u, t)|dudt < 2, m(Y, x©,) < 8. (11)
y 0<t<TJY, Jo, 4
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Choosing r € N with m(Y, x ®,)° < §, we have

t ol
o1 Litp, (u, t) - L u, t) |dudt
OStSTjojol Aoy (W5 1) = Ly, (. 1) |

< max J. J.| Ly, (w, t) = Ly, (u, t) |dudt

Lo, (w, t)— Ly, (u, t) |dudt
+5§i’%.”| Ao, (W 8) = Lt (u, ) |du
Y¢ef

since {Ly,} is Cauchy sequence in C° (Yo x©), we get

e €
onslti)é‘j I | L, (W, t) = Ly, (u, t) |[dudt < St =¢ (12)

hence for large n;, ny we deduce that {Ly,} is Cauchy sequence in
L;[0, 1] x C[0, T], therefore {Ly,} is relatively compact. In addition, LY is
relatively compact in the space [0, 1]x C[0, T']. Finally, form the previous

lemma and after using Schauder fixed point theorem we deduce that L has at
least one fixed point y(u, t) € L;[0, 1]x C[0, T'], which is the solution of

Eq.(1).
3. System of Hammerstein Integral Equations (SHIEs)

To find SHIEs of the second type, a quadratic numerical method is

utilized in this section.

For this, dividing the interval [0,7] into s sub-intervals,
0=ty <ty <...<tyg =T where t=t;,t=¢,1,)=0,1,2,...,S. Hence,

the integral term of Eq.(1) becomes

Et, t)o(u, v)ev, T, %V, 1))dvdt

O ey
O e =

ZW&(tl, J)_[ o{u, V), £, 10, t;)dv + O(RP™ ) h >0, p > 0. (13)
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where A; = max a
0<j<m

are the weights such that W, = a/2, j=0,i and Wi=a,0<j<i, the

j» @j =tjq —tj, h; the step size of integration and W;
value of i and p depend on the number of derivative of (¢, t) with respect to ¢

for all < € [0, T']. Hence, O(h” 1) is the order of sum of errors of the method.

After using Eq.(13), Eq.(1) yields a value that doesn’t include O(h” 1,

i 1
wi(w) = ;) + 2> Wity I ou, V)o;, x;©)dv, i =0,1,2, .., S  (14)
j=0 0

where,
W, ;) = ;W) a(w, &) = q;(w), &, t;) = &5, 0, tj, %, t;)) = 9;©, 1))
The formula (14) represents system of (s +1) HIEs in position and its
solution depends on the function ¢;(x), the kernel o(u, v) and the degree of
0, x;©)).
Lemma 6. The estimate local error R, ; of the quadrature numerical

method is determined by the relation,

t1
R j = 'H.&(t, to(u, v)e(, 1, %, 1, %, 1)))dvdr
00
i 1
- ZWjﬁijjo o, v)e;@, xjv)dv|,i=0,1,2,..,8 (15)
Jj=0

4. The study of exist at least a solution of SHIEs

The existence of at least a solution of SHIEs (14) of the second kind, will
be proved according to the Schauder fixed point theorem in the Banach space
L0, 1].

For this aim write Eq.(14) in the operator form
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I () = ﬁ[qiao + A7 (W)

1

Hori) = Y Wiy [ o, v)o v, 1;0)dv, ¥ i (16)
j=0 0

then assume the assumptions:
1. The given function ¢;(v, % ;(v)) satisfies the two assumptions:

1.1. For all integers i, | 9;(u, x;(w)) | < X;(w) + 8| x; @) |, A" =|X; |

1.2. For every positive & < & we can find §(€") in which,
1 sk *
1-3-I0| 0;(w, xi1(@)) — 0;(u, 7;2(w)) [du < &, such that || x; —xi [ < 8(€7)
i *
2.2 ol Wik | < 8™
1 *
3. j0| q;(w) |du < N*.

Theorem 2. In view of condition (i) of theorem 1 and conditions (1)-(3) the
SHIEs (14) have at least a solution in L,[0, 1] under the relation,

| 2 [onS™ < |u|

Lemma 7. Under the conditions (i1) of theorem 1 and conditions (1)-(2),

the operator H maps the ball B,a2 into itself.

Proof. Let y;(u) € B, B, = {x;(w) € R: | %;() ||L1[0, 1]}, r, 1s constant
be nonempty, closed, bounded and convex subset.
Define the norm of the operator Hy;(x) in L;[0, 1] by

1

196:@) I, o, 1) = [ 1 962:(u) |du, ¥ n
0

In the light of Eq.(16), after applying Hélder inequality and integrating,

we obtain
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1 1 1
Jo st lau < T g

i 1p1 1
13 Wik, [ o o) o] o000 o]
with the aid of above conditions, we get

. . A bnS”
| 91, () ”L1[0, 1< Fllul+glxi@) g, F=N"+|r|A"Dn, g = _| ||Mn| —
(18)

hence from inequality (18), the operator H maps B,2 into itself, where

F

L S— (19)
|l =% [onS®

)

since 7y > 0 then | A [bnS™ < |p|, therefore we have g < 1. Moreover, the

inequality (18) leads to the boundedness of K .

Lemma 8. If the assumption (ii) of theorem 1, and assumptions (1), (2) are
satisfied then } is continuous in B, .

Proof. Let 7;(z) and y;5(u) be two functions in B, , and from Eq.(16)

we find

| FHoin () = Hyio(w) |

< % ZWJE"U J.; o(u, v)(9;©, xj1) - 0;v, ¥j2(v))dv
=0

applying Holder inequality and then using the conditions (1) and (i1) of
theorem 1 to get

| Fia () = Hotzo (@) I 0,17 < €75 € = [ A |ES™ [ ] (20)
the last inequality shows that the operator 3 is continuous operator in Brz.

Lemma 9. The operator H is compact in the ball Brz.

Advances and Applications in Mathematical Sciences, Volume 23, Issue 9, July 2024



ASYMPTOTE BEHAVIOR OF A SOLUTION TO NONLINEAR ... 781

Proof. Since, B, c I;1[0, 1], B, is bounded in L1[0,1]. Therefore }B,
in L;[0, 1] is bounded. Then we will show that (Hy;(w)), — (Hy;(®)) in
L,[0, 1] Let y;(u) € B,,, then

| 0003, - 060D I = [ | @00, - (00,0 |du

-1,

1

= e, - Oow)

n

dvdu (21)

since,
. 1 u+n .
lim [ ] 06:0), - 00u@) |dv = 0 - Tim| 06¢;),, = (00%) o1 = O
n—>0NnJy n—0 ’

This implies that, (3y;), — (3x;) uniformly as n — 0. Then HB, is
relatively compact. Since B,a2 is bounded, hence H is compact operator.

According to previous lemmas 8 and 9, the operator defined by Eq.(18) is
continuous and compact, and has the ability to map a closed convex set B,2

into itself. Hence by theorem fixed point of Schauder, the operator H has at

least one fixed point in B, , therefore Eq.(14) has at least one solution

vi(w) € L]0, 1]. Hence the proof of theorem 2 is obtained. Also, for s — oo,
then

Z & j o, v)0 (v, 2;(0))dv - j j &(t, )ou, v)o(, 1, 1(v, 1))dvds

Thus, the solution of SHIEs (14) becomes the solution of Eq.(1). 14

Theorem 3. Under the conditions of theorem 2, and if, in the space
L]0, 1] the sequence {Py} = {(q;(w))s} converges uniformly to the function

P = {q;(u)}, then the sequence of functions {Xs} = {(X;u)),} of Eq.(14)

converges uniformly to the solution X = {X;(u)} of Eq.(14) in the same space.

Proof. From Eq.(14), we write
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(@) = (i @) I < ﬁ{l q; () - (q;(w); |

1Y Wik [ WG 0) 010, 1160 - 010, (o), |

After applying Hoélder inequality, integrating both sides and using the
conditions of theorem 2, we get

1 *
I %= s ||L1[071] Sm"P—ps ||L1[0,1]+8,5=|7L|‘18 e/l nf (22)

Since, | P - P, "L1[0 ) > 0as s > oo, then y — y; uniformly when

s — oo in the space L[0, 1]

5. Numerical Methods

The Collocation method and the Galerkin method are used to solve SHIEs

with continuous kernel in this section.
5.1 The Collocation method

Here, we use the Collocation method to obtain the numerical solution of
SHIEs of the second kind with continuous kernel. The idea of this method is
to transform it to SHIEs in terms of the linear combination coefficients

appearing in the representation of the solution yx(u,¢;) in Eq. (14) by a

partial sum,

m
G, t;) = Y cnlt (@) (23)
k=0
of m+1 linearly independent functions yo(w), x1 (@), ..., xm(@®) on the

interval [0, 1], therefore, we have

! 1
uGi(u) = q; + kz vvj&ijJ.O o(u, v)o; (v, G;(v, 7;{v))dv
=0

+E(u, cot;), e1(;), .. epy(8)), 0 =0,1,2, ..., s (24)
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Since, the error in Eq.(25) vanishes at m +1 point u, uq, ..., u,, then,

we get
m i 1 m
KD ekt ) = ) Wit [ ol v)cpj[v, D e >xk(v>Jdv
k=0 j=0 0 k=0
0<i<s,0<n<m. (25)

5.2. Galerkin method

In this method the error in Eq.(14) is orthogonal to m +1 given linear
independent functions on Gg(u), Gy (&), ..., G,,(v) the interval (0,1). Then

From the definition of orthogonally on E(u, cy(¢;), ¢; (), ..., ¢ () in
Eq.(14), we get

[ Gn) |1 enltn@ -2 Wity [ ol v)wj[v, D erlt; )xk(v)}dv}du
0 k=0 Jj=0

0 k=0

1
= J. G,(u)g;(w)du,0<i<s,0<n<m
0

6. Numerical Applications

The Collocation method and Galerkin method are used to discuss the
numerical solution for Eq.(1) with continuous kernels. using Mable 22
program. Studying the solution included two aspects regarding the difference

in the value of time.

Application 1. Consider the following NMIE,

t el
x(w, t) = qu, t)+ 0.0II J 2 cosvy2(v, t)dvdr, 0 <t < T <1,
040

the exact solution is y(u, t) = t2 exp(x).
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w107t
3 T T T T
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Figure 1. The relation between the collocation approximate at T

the exact solution.
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Figure 2. The relation between the Galerkin approximate at T
the exact solution.
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Figure 3. The Collocation estimating error at 7' = 0.01
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< 107
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Figure 4. The Galerkin estimating error at 7' = 0.01
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Figure 5. The relation between the collocation approximate at 7' = 0.5 ant

the exact solution.
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Figure 6. The relation between the Galerkin approximate at 7 = 0.5 and

the exact solution.
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Figure 8. The Galerkin estimating error at 7' = 0.5
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Figure 9. The relation between the collocation approximate at 7' = 0.9 and

the exact solution.
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Figure 10. The relation between the Galerkin approximate at 7" = 0.9 and

the exact solution.
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Figure 12. The Galerkin estimating error at 7' = 0.9

Application 2. Consider the NMIE,

t el
x(w, t) = qu, t)+ 0.0II J 2 cosvy®(v, t)dvdr, 0 <t < T <1,
040

exact solution is, y(u, t) = t2 sin .
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Figure 13. The relation between the collocation approximate at 7 = 0.01

and the exact solution.
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Figure 14. The relation between the Galerkin approximate at 7'

the exact solution.
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Figure 15. The Collocation estimating error at 7' = 0.01
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Figure 16. The Galerkin estimating error at 7' = 0.01
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Figure 17. The relation between the collocation approximate at 7' = 0.5 and

the exact solution.
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Figure 18. The relation between the Galerkin approximate at 7' = 0.5 and

the exact solution.
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Figure 19. The Collocation estimating error at 7' = 0.5
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Figure 21. The relation between the collocation approximate at 7' = 0.9 and

the exact solution.
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Figure 22. The relation between the Galerkin approximate at 7' = 0.9 and

the exact solution.
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Figure 24. The Galerkin estimating error at 7 = 0.9

Conclusion

The research is a completed study that includes a theoretical side and is

supported by mathematical applications. This work gives a sophisticated
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study that focuses on the properties and stability of the solution of the
nonlinear mixed integral equation so as to ensure that there is at least a
single solution to it and a deep understanding of the way to behave with
modified systems from a wide range of scientific and engineering disciplines.
We focus on the study of nonlinear mixed-integral equations. The quadratic
numerical method is a powerful mathematical tool that allows us to
transform nonlinear mixed integral equations in position and time into a
system of nonlinear integral equations in position only. This technique
enables us to handle the integral equations more efficiently. The collocation
method and the Galerkin method are numerical methods used to solve the
system of nonlinear integral equations with high accuracy and computational
efficiency. Using the two methods, we compute and plot the error estimates
associated with the proposed integral equation. We can establish the
following:

e The absolute value of the error increases as the time value
T, 0 < T <1 increases in both study cases for the two methods used in

the two applications.

e The error of the Galerkin method is close to the error of the collocation
method.
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