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Abstract

The iterative solution of a rectangular linear system of equations of the form Ax = b may
be found using the theory of matrix splittings. In order to improve the rate of convergence of
such an iterative method, several comparison results for different classes of proper splitting
have been proved in the literature. In this article, we also establish a few comparison results for
different proper weak splittings for rectangular matrices by extending the work of Cao et al.
[Cao, Z. H.; Wu, H. B,; Liu, Z., A note on weak splitting of matrices, Appl. Math. Comput. 112
(2000), 265-275].

1. Introduction

Consider a linear system
Ax =b, A e R™" x ¢ R" and b € R™, (1.1)

Rmxn

where A e is a given matrix, x € R" is the unknown vector and

b e R™ is a given vector. When the coefficient matrix A is very large and
sparse, iterative methods become more efficient. In order to find an iterative
solution of (1.1), in [3], by considering A = M — N 1is a proper splitting, the
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authors introduced the following iterative method:

= MTNe® + M, =01, 2, ..., (1.2)

where M'N is the iteration matrix and M is the Moore-Penrose inverse of
M [20]. The same authors also proved that the sequence defined in (1.2)

converges to A'b for any initial guess xo, if and only if p(M ‘N ), the
spectral radius of the iteration matrix M'N is less than one. (see Corollary
1, [3], for instance). Therefore, the rate of convergence of the iterative method
(1.2) depends on p(M ‘N ) and so, the spectral radius of the iteration matrix is

crucial in comparing the rate of convergence of various iterative methods for
the same system. In this context, many comparison theorems are proved in
the literature; see, e.g., [1, 3, 5, 6, 7, 8, 10, 11, 15, 16, 18, 19, 22].

The major goal of this article is to provide more comparison results for
the proper weak splitting of type I and type II [6, 11, 17]. To this end, the
article is organized as follows. Section 2 introduces notations, definitions and
a few preliminary results that are commonly utilized in deriving the main
results. In Section 3, we derive several comparison results for proper weak
splittings.

2. Prerequisites

Throughout the article, R™", AT R(A), and N(A) denote, the set of all

real matrices of order m x n, the transpose, the range space, and the null
space of A € R™", respectively. If T @ S = R", then Py g is a projection
onto T'along S. Then Py gA = A if and only if R(A) c T and APp g = A if
and only if N(A)> S. If T L S, then Pp g will be denoted by Pp. The

spectral radius of A € R™", denoted by p(A) is defined by p(4) = max| %; |,
1<i<n

where Ay, A9, ..., A, are the eigenvalues of A. It is well known that

p(AB) = p(BA), where A and B are two matrices such that AB and BA are

defined. A matrix A € R™", is said to be convergent if lim A* = O, where
n—o0
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O is the null matrix. It is well known that A € R™" is convergent if and only

if p(A) <1. A e R™" is called non-negative if A > 0, where A > 0 means

each entry of A is non-negative For A, B € R"™", A < B means B—- A > 0.
Similarly, B > 0 means all the entries of B are positive. By e;, we denote the
i-th column of an identity matrix I of appropriate order. The Moore-Penrose
inverse of A € R™" is the unique matrix X € R™™ which satisfies the

following matrix equations: AXA = A, XAX = X, (AX )T = AX and

(XA)T = XA. It always exists, and is denoted by A'. The Moore-Penrose
inverse of a nonsingular matrix is same as the ordinary inverse. The

following properties of A’ are well-known [9]: R(A') = R(AT), N(4")

= N(AT); AA" = Pps; A'A = P, In particular, if x e R(AT), then

(a’y
x = A"Ax. These will be used frequently in our main results. For more

details one may refer to [2].

2.1. Proper splittings. Let A € R™". Then the splitting A = M — N
is called a proper splitting if R(M) = R(A) and N(M) = N(A) (see [3] for
instance).

Following that, we will gather a few properties of a proper splitting.

Theorem 2.1. (Theorem 1, [3]). Let A = M — N be a proper splitting of
A € R™™, Then

(a) A= M(I-M'N),
() I - M'N is nonsingular;
© A" =(I-MNM'.

Theorem 2.2. (Theorem 1, [6]). Let A = M — N be a proper splitting of
A e R™™. Then

() A=(I-M'N)M;

(b) I - NM" is nonsingular;
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@ A" =M'(I-NM".
Different subclasses of a proper splitting are recalled next.
Definition 2.3. A proper splitting A = M — N of A € R™" is called:
(a) convergent if and only if p(M'N) < 1;
(b) a proper weak splitting of type I, if M'N > 0 [11];

(c) a proper weak splitting of type IL, if NM' > 0 [6].
3. Main Results

In this section, we will prove some comparison results. Before that we will

begin with the following result.

Theorem 3.1. Let A = M, — N, be a convergent proper weak splitting of
type Il and A = My — Ny be a convergent proper weak splitting of type 1 of

A e R™,

Then

G) If M] > M}, then A'N,A" > A'N\A". In particular, if M| > MJ},
then ATNyA" > ATN,AT,

(i) If ATNoA" > ATN A", then (ATNy)P A" > (A'NyYP A" for all positive
integers p > 1.

In particular, if ATN2AT > ATNIAT, then for all positive integers p > 1,
(ATN, P A" > (ATN;)P AT,

Proof. (i) Since p(MINl) <1 and p(M;N2) <1, it follows from [21,

Theorem 3.15] that (I — NlMlT)_1 >0 and (I - N2M;)_1 > 0. Therefore, we

have

ATN,AT — ATNj AT = AT(Ng — Np)AT
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= AT(M, — M)AT
= A" (MMM, - MyMM;)A”
= A'My (M - MM AT
= (I - MyNy)™ MyMy(M{ — My)MM{(I - NyM{)™
= (I - MyNJY N (M - M))(T - NyMY ! > 0.
Moreover, if M; > M;, then A'N,A" — AN, AT > 0.
(11) It suffices to prove that it holds for p = 2. So,
(A'N,)? A" = ATN,ATN,AT
> ATN,ATN AT
> ATN;ATN, AT
= (A'N;)? AT
Now assume that A'N,A" > ATN;A". We will prove that (4'N,)*A"

> ATNyATNJAT.  The proof is by contradiction. If (A'Ny)?AT

> A'TN,A'N;A" does not hold, then there exists e; and e; such that

el (AN, Ae; = ] ATNJA'N A'e;, ie., ef ATNG(A'N,AT — ATN AT e;

= 0. But since A'N,A" - ATN;A" > 0, this leads to eiTATN2 = 0. Thus, we

have A'Ny,A" > A'TN;A", which implies e/ A'Ny > el ATN;A". Since

eiTAJrNZAT =0 we have eiTATNlAf < 0, which is a contradiction. Thus

(ATN,?A" > (ATN;)? A" O
The aforementioned theorem is illustrated in the following example.

1 -3/2 1

Example 3.2. Let A =
xamp © (— 4/3  7/3  —4/3

j=M1—N1 = My - Ny,
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2 -3 2 1 -3/2 1
where M; = ( ], N; = ( / j,
4 7T -4 ~8/3 14/3 -8/3
3 -2 2 2 -2 3
Mz Z[ j, N2 Z( J Then, A = M]. - Nl
-3 7 -3 ~5/3 14/3 -5/3

is a convergent proper weak splitting of type I and A = My — Ny is a

convergent proper weak splitting of type II, respectively. We also have

7/4  3/4) (7/30 1/15
M{=|2 1 |z2|1/5 1 |=M) A'N,A
7/4 3/4) \7/30 1/15
231/4 327/8) (7/2 9/2
= 2 99/8 4 6 |=A'N;A" and (ATN,)*AT
231/4 327/8) \7/2 9/2
7833/8 11181/16) (7/2 9
=|2349/2 3357/4 |>| 4 12|=(A'N;)?A".
7833/8 11181/16) \7/2 9

Now we have the following comparison results for proper weak splittings.

Theorem 3.3. Let A= M; - N; =My —- Ny be convergent weak

splittings of both types such that ATN2AT > ATNlAT. Let u and v be

nonnegative vectors such that

A'NJA'Nou = p(A'TN;A'Nyu  and

A'NyA'Nw = p(A'TNoA'Ny . If Nou>0,Nju>=0 with v>0, and

Nou # 0 or Nyv # 0, then p(MINl) < p(M;Nz) <1.

Proof. Assume that Nyu > 0, Nou # 0. Then (A'Ny)?u = ATN,A'Nyu
> A'NJA"Nou = p(ATN;A'Ny)u. Hence, by [4, Theorem 2.1.11], we have
(P(ATNy))? > p(ATN;ATN,), ie., p(ATN;A'N,) < (p(A'N,))? which implies
that (p(A'Np)? < p(A'N;ATNy) < (p(ATNy)). Hence, p(A'Ny) < p(ATNy).
By [11, Lemma 3.5], we have p(MlTNl) < p(M;Nz) < 1. Similarly, when

Nyv 2 0 with v > 0 holds, we can prove the required inequality. ]
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Theorem 3.4. Let A= M; -N; =My - Ny be convergent weak
splittings  of both types and (A'Ny)P A" > (A'N;YA'  for some
positive integer p. Let u and u be nonnegative vectors such
that (A'N;)P(A'Ny)Pu = p((A'NyYP(A'NyY ) and (A'Ny)P(A'Ny)Pu
= p((ATNy)P(ATNy)P Y, respectively. If Nou > 0, Nyv > 0 with v > 0, then
p(MNy) < p(MyN3) < 1.

Proof. Since NyM, >0 and p(NyM,) <1, by [21, Theorem 3.15] we
have NoA" = NoyMY(I - NoM})™ >0 and so (NyA')P'Nou>0. The
given hypothesis (A'Ny)P? A" > (ATN;)P A, implies

(ATN, )P AT (Ny ATV Nou > (ATN) )P AT (N, ATYP I Nou

= (A"N; )P (A'Ny)Pu
= p((A'N ) (A'N3)" .

So, (A'Ny)*Pu > p((ATNyYP(A'N;)P)u. Again, p(MiNy) <1 implies
that A'Ny = (I - M{Ny) " MIN, > 0. Hence, (p(ATNy)?P
> p((A'N;)P(A'N3)P), by [4, Theorem 2.1.11]. Similarly, (p(4'V;)*P
< p((A"N3)P(A'Ny)P). Finally, we have (p(A"Np))? > p(A'Ny)P(A'N;)P)
< (p(A*Nz))zp, which implies p(A'N;) < p(A*Ny). By [11, Lemma 3.5] we
get p(MlTNl) < p(M;Nz) <1. O

The following example illustrates the aforementioned theorems.

3 -1 3 3 -0.5 3
Example 3.5. Let A= =
-1 3 -1 -0.5 3 -0.5

0 0.5 0 3 0 3 0 1 O
0.5 0 0.5 0 3 O 1 1 1

Then, the splittings are convergent proper weak splittings of both types.

Advances and Applications in Mathematical Sciences, Volume 23, Issue 5, March 2024



384 SMRUTILEKHA DAS and DEBADUTTA MOHANTY

229/561
Here, for p =1, we have A'TNyA" > ATNJA". Here, u = v = |574/703| > 0

229/561
574/703 287/703
with Nou = ( / j >0, Njv = [ / ) > 0. Hence,
458/561 229/561

1
p(M{Ny) = E<3= (M3Ny) < 1.

Wl

Theorem 3.6. Let A = M; — N; = My — Ny be convergent proper weak

splitting of A € R™" with A" > 0. If p(M]{N;) < p(M}Ny) and either of
the following cases holds:

(i) A'N, > 0;
(i1) There  exists

PTA'N,P - (Bn By

a permutation  matrix P
B } where By1, Big, Bog > 0 and p(Byy) = p(Bgg );
22

such that

(111) There exists a permutation matrix P such that

0 B
PTATN2P=( 12j,

3.1

where By, Bgg > 0.

Then  there must be a

positive  integer

po such that
(ATNy)P A" > (ATNy)YP A" for all positive integer p > py.

Proof. We will only prove for the case (b), the other cases are analogous.
Clearly, for any positive integer p > 1, we have

-1 -1
PT(A'N,)PP > Bfi B{j Bz + BisBjy |
0 B,
Let p(A'Ny)=p(>0). Then p(B;)=p(A'Ny),i=1,2 by

the
assumption. As By;, Bjg, Bgg, by [4, Theorem 2.4.1], we have

p
lim L Bii > 0, I = 1, 2.
p—oo pP
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Hence,
T A A A
lim P (A'Ny)"P s (B (BuBiz + BiaBos)/p|
P p? 0 Bss

Since A" > 0, partitioning A" conformally with respect to the partition
in (3.1):

A (Aﬂ Am} .0,
Ag1  Af
and we can conclude that
TATN. VP PAt
lim P*(A'Ny)PPA
p—o® pp

> (13111412 +(By1Byg + B1aBgg)Ag [p 13111412 +(By1Byg + Byg + 312322)A22/Pj_
By Ay ByyAgo

So, all the entries in the above equation are positive. On the other hand,

p(M]N;) < p(M5Ny), implies that

T(pt P
i PTATN)PP
pP—>0 pp

0.

Thus

Tqpt D i
lim P*(A'N; )’ PA _0
p—o p?

So, there must be a positive integer p, such that

(A'Ny)PA" (AN AT
p? p?

b

for all p > pg, ie.,
(ATNyP A" > (AN, )P AT,

for all p > py.
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