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Abstract 

The iterative solution of a rectangular linear system of equations of the form bAx   may 

be found using the theory of matrix splittings. In order to improve the rate of convergence of 

such an iterative method, several comparison results for different classes of proper splitting 

have been proved in the literature. In this article, we also establish a few comparison results for 

different proper weak splittings for rectangular matrices by extending the work of Cao et al. 

[Cao, Z. H.; Wu, H. B.; Liu, Z., A note on weak splitting of matrices, Appl. Math. Comput. 112 

(2000), 265-275]. 

1. Introduction 

Consider a linear system 

nnm xAbAx    ,,  and ,mb    (1.1) 

where nmA    is a given matrix, nx   is the unknown vector and 

mb   is a given vector. When the coefficient matrix A is very large and 

sparse, iterative methods become more efficient. In order to find an iterative 

solution of (1.1), in [3], by considering NMA   is a proper splitting, the 
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authors introduced the following iterative method: 

,,2,1,0,1  kbMNxMx kk    (1.2) 

where NM   is the iteration matrix and M  is the Moore-Penrose inverse of 

M [20]. The same authors also proved that the sequence defined in (1.2) 

converges to bA  for any initial guess ,0x  if and only if  ,NM   the 

spectral radius of the iteration matrix NM   is less than one. (see Corollary 

1, [3], for instance). Therefore, the rate of convergence of the iterative method 

(1.2) depends on  NM   and so, the spectral radius of the iteration matrix is 

crucial in comparing the rate of convergence of various iterative methods for 

the same system. In this context, many comparison theorems are proved in 

the literature; see, e.g., [1, 3, 5, 6, 7, 8, 10, 11, 15, 16, 18, 19, 22]. 

The major goal of this article is to provide more comparison results for 

the proper weak splitting of type I and type II [6, 11, 17]. To this end, the 

article is organized as follows. Section 2 introduces notations, definitions and 

a few preliminary results that are commonly utilized in deriving the main 

results. In Section 3, we derive several comparison results for proper weak 

splittings. 

2. Prerequisites 

Throughout the article,  ,,, ARATnm  and  AN  denote, the set of all 

real matrices of order ,nm   the transpose, the range space, and the null 

space of ,nmA    respectively. If ,nST   then STP ,  is a projection 

onto T along S. Then AAP ST ,  if and only if   TAR   and AAP ST ,  if 

and only if   .SAN   If ,ST   then STP ,  will be denoted by .TP  The 

spectral radius of ,nnA    denoted by  A  is defined by   ,max
1

i
ni

A 


 

where n ,,, 21   are the eigenvalues of A. It is well known that 

   ,BAAB   where A and B are two matrices such that AB and BA are 

defined. A matrix ,nnA    is said to be convergent if ,lim OAk

n



 where 
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O is the null matrix. It is well known that nnA    is convergent if and only 

if   nmAA  .1  is called non-negative if ,0A  where 0A  means 

each entry of A is non-negative For BABA nm   ,,   means .0 AB  

Similarly, 0B  means all the entries of B are positive. By ,ie  we denote the 

i-th column of an identity matrix I of appropriate order. The Moore-Penrose 

inverse of nmA    is the unique matrix mnX    which satisfies the 

following matrix equations:   AXAXXXAXAAXA
T

 ,,  and 

  .XAXA
T

  It always exists, and is denoted by .A  The Moore-Penrose 

inverse of a nonsingular matrix is same as the ordinary inverse. The 

following properties of A  are well-known [9]:       ANARAR T ;  

     
.;; TARAR

T PAAPAAAN    In particular, if  ,TARx   then 

.AxAx   These will be used frequently in our main results. For more 

details one may refer to [2]. 

2.1. Proper splittings. Let .nmA    Then the splitting NMA   

is called a proper splitting if    ARMR   and    ANMN   (see [3] for 

instance). 

Following that, we will gather a few properties of a proper splitting. 

Theorem 2.1. (Theorem 1, [3]). Let NMA   be a proper splitting of 

.mnA    Then 

(a)  ;NMIMA   

(b) NMI   is nonsingular; 

(c)   .
1  MNMIA


  

Theorem 2.2. (Theorem 1, [6]). Let NMA   be a proper splitting of 

.mnA    Then 

(a)   ;MNMIA   

(b) NMI   is nonsingular; 
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(c)   .
1

  NMIMA  

Different subclasses of a proper splitting are recalled next. 

Definition 2.3. A proper splitting NMA   of nmA    is called: 

(a) convergent if and only if   ;1 NM   

(b) a proper weak splitting of type I, if 0NM   [11]; 

(c) a proper weak splitting of type II, if 0NM  [6]. 

3. Main Results 

In this section, we will prove some comparison results. Before that we will 

begin with the following result. 

Theorem 3.1. Let 11 NMA   be a convergent proper weak splitting of 

type II and 22 NMA   be a convergent proper weak splitting of type I of 

.nmA    

Then 

(i) If ,21
 MM   then .12

 ANAANA   In particular, if ,21
 MM   

then .22
 ANAANA   

(ii) If ,12
 ANAANA   then      ANAANA

pp
12   for all positive 

integers .1p  

In particular, if ,12
 ANAANA   then for all positive integers ,1p  

    .12
 ANAANA

pp
  

Proof. (i) Since   111  NM   and   ,122  NM   it follows from [21, 

Theorem 3.15] that   0
1

11 
MNI  and   .0

1
22 

MNI  Therefore, we 

have 

   ANNAANAANA 1212   
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   AMMA 12   

   AMMMMMMA 122112   

   AMMMMA 1212   

      1
11112122

1
22


  MNIMMMMMMNMI  

      .0
1

1121
1

22 
  MNIMMNMI  

Moreover, if ,22
 MM   then .012   ANAANA  

(ii) It suffices to prove that it holds for .2p  So, 

   ANANAANA 22
2

2   

 ANANA 12  

 ANANA 11  

  .
2

1
 ANA  

Now assume that .12
 ANAANA   We will prove that    ANA

2
2  

.12
 ANANA  The proof is by contradiction. If    ANA

2
2   

 ANANA 12  does not hold, then there exists ie  and je  such that 

  ,12
2

2 j
T
ij

T
i eANANAeeANAe    i.e.,   j

T
i eANAANANAe 

122   

.0  But since ,012   ANAANA  this leads to .02 NAeT
i

  Thus, we 

have ,12
 ANAANA   which implies .12

 ANAeNAe T
i

T
i   Since 

02  ANAeT
i  we have ,01  ANAeT

i  which is a contradiction. Thus 

    .
2

1
2

2
 ANAANA   □ 

The aforementioned theorem is illustrated in the following example. 

Example 3.2. Let ,
343734

1231
2211 NMNMA 












  
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where ,
3831438

1231
,

474

232
11 

























 NM  

,
373

223
2 

















M  .

3531435

322
2 

















N  Then, 11 NMA   

is a convergent proper weak splitting of type I and 22 NMA   is a 

convergent proper weak splitting of type II, respectively. We also have 

  ANAMM 221 ,

151307

151

151307

4347

12

4347



































   

 ANA 1

2927

64

2927

83274231

8992

83274231



































  and    ANA
2

2  

   .

927

124

927

161118187833

4335722349

161118187833
2

1
 ANA


































  

Now we have the following comparison results for proper weak splittings. 

Theorem 3.3. Let 2211 NMNMA   be convergent weak 

splittings of both types such that .12
 ANAANA   Let u and v be 

nonnegative vectors such that  uNANAuNANA 2121
   and 

  .1212 vNANAvNANA    If 0,0 12  vNuN  with ,0v  and 

02 uN  or ,01 vN  then     .12211  NMNM   

Proof. Assume that .0,0 22  uNuN  Then   uNANAuNA 22
2

2
   

  .2121 uNANAuNANA    Hence, by [4, Theorem 2.1.11], we have 

    ,21
2

2 NANANA    i.e.,     2221 NANANA    which implies 

that         .
2

221
2

1 NANANANA    Hence,    .21 NANA    

By [11, Lemma 3.5], we have     .12211  NMNM   Similarly, when 

01 vN  with 0v  holds, we can prove the required inequality. □ 
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Theorem 3.4. Let 2211 NMNMA   be convergent weak 

splittings of both types and      ANAANA
pp

12   for some             

positive integer p. Let u and u be nonnegative vectors such                            

that         uNANAuNANA
pppp

2221
   and     vNANA

pp
12

  

     ,22 vNANA
pp   respectively. If 0,0 12  vNuN  with ,0v  then 

    .12211  NMNM  

Proof. Since 022 MN  and   ,122  MN  by [21, Theorem 3.15] we 

have   0
1

22222 
 MNIMNAN  and so   .02

1
2 


uNAN

p  The 

given hypothesis     ,12
 ANAANA

pp
  implies 

        uNANANAuNANANA
pppp

2
1

212
1

22


   

    uNANA
pp

21
  

     .21 uNANA
pp   

So,        .11
2

2 uNANAuNA
ppp    Again,   122  NM   implies  

that   .022
1

222 


NMNMINA   Hence,    p
NA

2
1

  

    ,21
pp

NANA   by [4, Theorem 2.1.11]. Similarly,    p
VA

2
1

  

    .12
pp

NANA   Finally, we have        ppp
NANANA 12

2
1

   

   ,
2

2
p

NA  which implies    .21 NANA    By [11, Lemma 3.5] we 

get     .12211  NMNM   □ 

The following example illustrates the aforementioned theorems. 

Example 3.5. Let 


























5.035.0

35.03

131

313
A  

.
111

010

030

303

5.005.0

05.00
2211 NMNM 


























   

Then, the splittings are convergent proper weak splittings of both types. 
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Here, for ,1p  we have .12
 ANAANA   Here, 0

561229

703574

561229


















 vu  

with .0
561229

703287
,0

561458

703574
12 

















 vNuN   Hence,  

    .1
3

1

5

1
2211  NMNM   

Theorem 3.6. Let 2211 NMNMA   be convergent proper weak 

splitting of nmA    with .0A  If    2211 NMNM    and either of 

the following cases holds: 

(i) ;02 NA  

(ii) There exists a permutation matrix P such that 

,
0 22

1211
2 










B

BB
PNAPT   where 0,, 221211 BBB  and    ;2211 BB    

(iii) There exists a permutation matrix P such that 

,
0

0

22

12
2 










B

B
PNAPT   (3.1) 

where .0, 2212 BB  

Then there must be a positive integer 0p  such that 

     ANAANA
pp

12   for all positive integer .0pp   

Proof. We will only prove for the case (b), the other cases are analogous. 

Clearly, for any positive integer ,1p  we have 

  .
0 22

1
221212

1
1111

2 











 




p

ppp
pT

B

BBBBB
PNAP   

Let    .02  NA  Then     2,1,2  iNABii
  by the 

assumption. As ,,, 221211 BBB  by [4, Theorem 2.4.1], we have 

.2,1,0ˆ:lim 


iB
B

iip

p
ii

p
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Hence, 

   
.

ˆ0

ˆˆˆ
lim

22

22121211112












 


 B

BBBBBPNAP
p

pT

p


 

Since ,0A  partitioning A  conformally with respect to the partition 

in (3.1): 

.0

2221

1211 















p

p

AA

AA
A  

and we can conclude that 

 
p

pT

p

PANAP




2lim  

   
.

ˆˆ

ˆˆˆˆˆˆ

22222221

222212121211121121221212111211









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So, all the entries in the above equation are positive. On the other hand, 

   ,2211 NMNM    implies that 

 
.0lim 1 

 p

pT

p

PNAP 
 

Thus 

 
.0lim 1 

 p

pT

p
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So, there must be a positive integer 0p  such that 

   
,12

p

p

p
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
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for all ,0pp   i.e., 

    ,22
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pp
  

for all .0pp   
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