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Abstract 

In this paper, we aim to investigate the convergence behaviour of the Parallel Schwarz algorithm at the 

continuous level for the Helmholtz equation with absorption. More precisely, we examine the behaviour of the 

Parallel Schwarz method by taking into account different types of boundary conditions at the external 

boundaries of the subdomains and modifying the interface conditions. The boundary conditions on top and 

bottom of the rectangle are always Dirichlet. In this way, we see how the choice of the boundary conditions and 

interface conditions affect the overall performance of the iterative method. The global working domain is a 

rectangle with a Lipschitz boundary, decomposed into two sub-rectangles of equal size. To analyse the 

Performance of the Parallel Schwarz algorithm at the continuous level we use Fourier Analysis techniques and 

obtain the appropriate contraction factors which are revealing on how the errors contract. The Helmholtz 

equation frequently arises in the study and modelling of various physical phenomena. A few applications can be 

mentioned such as the scientific study of earthquakes, volcanic eruptions, Medical Imaging and 

Electromagnetism. There are various challenges to solving the Helmholtz equation numerically. One challenge 

stems from the fact that the problem is not symmetric and positive definite and the other one is from the fact 

that the wave number provides solutions with highly oscillatory behaviour. These issues that arise, make the 

Helmholtz equation substantially difficult to solve. 

1. Introduction 

During the last few decades, Domain decomposition methods have 

attracted a lot of attention from mathematical and engineering communities 

worldwide. The main reason is that this class of methods is very efficient for 

solving partial differential equations numerically, and presents 

computational and mathematical challenges. The spirit of Domain 

decomposition algorithms is to decompose the global boundary value problem 

on the whole domain into multiple local subproblems in multiple subdomains 



ALEXANDROS KYRIAKIS 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 8, June 2024 

750 

[7], [8], [9], [10]. This approach enables us to reduce computational costs by 

solving smaller and cheaper local boundary value problems. By solving local 

subproblems, the computational effort is balanced in the different 

subdomains, and working with one global problem can be avoided. Domain 

decomposition methods can be used to solve partial differential equations 

sequentially or in parallel. Originally these schemes stem from the work of 

the famous German analyst Hermann Amandus Schwarz [4], [5], [6] back in 

1869, who devised an iterative method to close a gap in Riemann’s mapping 

theorem. This iterative method was used to solve the Laplace equation in an 

irregular domain (union of circle and rectangle) solving in an alternating 

approach, first in the circle and then in the rectangle, back and forth, passing 

the values at the interfaces. This is the so-called Alternating Schwarz 

algorithm. Later on, the French mathematician Pierre Luis Lions proposed a 

modification of the Classical Schwarz method [13], by changing one interface 

condition, leading to the Parallel Schwarz method. This strategy enables 

solving the two local boundary value problems in the two subdomains in 

parallel, passing the traces at the two interfaces. By appropriate finite 

difference or finite element discretization scheme, an algebraic solver is 

obtained that can be used by engineers and computational scientists. With 

regards to the behaviour of the Parallel Schwarz algorithm at the continuous 

level, there is one revealing analysis that predicts the overall behaviour. By 

performing a convergence analysis, we obtain a contraction factor which is a 

good measure of how the error behaves. This analysis can be conducted using 

Fourier transform if the domains are unbounded or the Fourier series if the 

domains are bounded. Usually, this error analysis is conducted for two 

subdomains and it is a common strategy in the literature [17]. For our 

analysis, we focus on the Helmholtz equation with absorption where we have 

two overlapping bounded domains, more precisely a union of two rectangles 

of equal size. We retrieve the reduction factors in each case with different 

boundary and interface conditions. The choices are either Dirichlet or 

Neumann. In addition, the Optimized Schwarz algorithm is analysed in 

similar fashion with [1], [2], [3], where impedance conditions are used on the 

left and right edge of the global domain and at the two interfaces. Lastly, we 

provide some illustrations of the methods, giving the figures of the reduction 

factors for each one of the different scenarios and the spectrum of the 

Schwarz iteration matrices in the complex plane for each of the algorithms. 
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2. The Model Problem 

The equation of interest in the paper is the Helmholtz equation with 

absorption. This problem is ubiquitous in science and engineering with a 

variety of applications and one of the most important is the study of wave 

propagation phenomena. There are two aspects that make this scalar elliptic 

equation intriguing [11], [12]. One aspect is the fact that the problem is not 

symmetric positive definite. The other one is that due to the wave number, 

the solutions present highly oscillatory behaviour. We give the definition of 

the Helmholtz problem with damping where the domain    Lba ,0, 21   

is a rectangle with Lipschitz boundary ,  where L is the height of the 

rectangle. The equation in strong form is 

       











onb.c.external 

,in,,, 2 yxfyxuikkyxu
 (1) 

where   ,0k  is the wave number,     1, Hyxu  is the solution of the 

equation and    ., 2  Lyxf  The functional space  1H  is the classical 

Sobolev space and the functional space  2L  is the usual space of square-

integrable functions. The 
2

2

2

2

yx 







  is the Laplace operator in the case 

of two dimensions. 

3. Motivation for the Choice of the Boundary Conditions 

The choice of the boundary conditions in the computational domain has 

an influence on the Schwarz algorithms and their behaviour. This will be 

demonstrated by obtaining the formulas for the reduction factors. There are 

three types of boundary conditions for the study of Schwarz algorithms: 

 Duu   (Dirichlet boundary conditions), 

 Ngnu 


 (Neumann boundary conditions), 

 Rgcunu 


 (Robin boundary conditions). 
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4. The Formulation of the Schwarz algorithm-Case 1 

In this section we formulate the Parallel Schwarz algorithm for the 

differential problem reported in (1). We decompose the domain 

   Lba ,0, 21   into two bounded overlapping subdomains 

   Lba ,0, 111   and    .,0, 221 Lba   The Parallel Schwarz 

algorithm in strong form reads 

     
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where the two interfaces are   111 \  and 

 .\ 222    The  m  denotes the number of iterations and it is 

evident that in order to start the iterative process the two initial guesses are 

required at the two interfaces, namely 
 0
1u  and 

 
.

0
2u  At the external 

boundaries of the two subdomains, Dirichlet boundary conditions are 

imposed. It is observable that with this approach we break the boundary 

value problem in (1) into a collection of two subproblems that are solved in 

parallel using the traces at the interfaces, solving until convergence is 

reached. 

Theorem 1. The contraction factor of the Parallel Schwarz algorithm for 

case 1 is given by the formula  

 
    

    

    

    11

12

22
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2121

2
1 ~

sinh

~
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~
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~
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,,,,;
~

abk

bbk

abk

aak
bbaakkrcs








  (3) 

where k
~

 is the Fourier number and   .
~~ 22 ikkkk   

Proof. The first step is to introduce the errors at each iteration  m  in 

each subdomain. The error is the first subdomain is given by 

   mm uue 11 1



 and the error in the second subdomain is given by 

   ,22 2

mm uue 


 where the function 
1

u  is the restriction of the solution to 

the subdomain 1  and 
2

u  is the restriction of the solution to the 
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subdomain .2  By the linearity of the two differential problems in (2), the 

two errors satisfy the homogeneous analogues of (2), and the algorithm takes 

the form 

     

   
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 (4) 

Since we are working with bounded subdomains and more accurately 

rectangles, we can use the Fourier Series to expand the two solutions in the 

first subdomain and in the second subdomain respectively. The two solutions 

should satisfy the homogeneous Dirichlet boundary conditions on the top and 

bottom of the rectangles. In order to accommodate this requirement, we 

expand the functions 
 m

e1  and 
 m

e2  in Fourier sine series 

     ,
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where the set 
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L

n

LL
K ,,

2
,   denotes the discrete Fourier 

frequencies. We plug in the formulas prescribed by (5), (6) back to the Parallel 

Schwarz method in (4) and it follows that the Fourier coefficients 
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ee 21
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taking into account that 

     
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for .2,1j  There are two linear second order ordinary differential equations 

that arise in the two Schwarz problems in (7). These can be solved, and the 

general solutions are given by the formulas  

             ,
~~~

,ˆ
~

1

~

11
xkmxkmm ekBekAkxe    (8) 
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22
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where 
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,
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,

~
,

~
2211  are arbitrary coefficients, which 

can be specified by the boundary conditions. Also the  k
~

  is provided by the 

relation   .
~~ 22 ikkkk   For the first Schwarz problem, the solution 

must satisfy the homogeneous Dirichlet boundary condition at ,1ax   

therefore for this prescribed boundary condition the solution becomes 
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We move to the second Schwarz problem in (7), and by taking into 

account the boundary condition at 2bx   the error becomes 
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We substitute the two solutions in (10), (11) back to the transmission 

conditions in (7) to obtain 
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The expressions above can be written in a compact form 
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where 
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is the Schwarz iteration matrix. Consequently, in (12) we have a stationary 

iteration, and the spectral properties of the Schwarz matrix determine the 

behavior of the algorithm. The eigenvalues of (13) are 
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By definition, the spectral radius of the iteration matrix is 
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5. The Formulation of the Parallel Schwarz algorithm - Case 2 

In this section we modify the overlapping domain decomposition problem. 

We consider that the external boundary conditions are Dirichlet as before, 

but now the interface conditions are modified. Instead of using Dirichlet, we 

use the Neumann boundary conditions and now the formulation of the 

Schwarz method is 
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where  0,11 n  and  0,12 n  are the outward normal vectors. Note that 

the fluxes 
 

1
0

2 nu  and 
 

2
0

1 nu  are needed to start the iterative procedure. 
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Theorem 2. The reduction factor of the Parallel Schwarz algorithm for 

case 2 is given by the formula 
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Proof. We can write the iterative scheme prescribed by (14) in the form 
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taking into consideration that the minus signs that appear in  216  (second 

Schwarz problem) are cancelled on both sides. For the convergence analysis, 

the errors are introduced at each iteration and due to the linearity of the two 

Schwarz problems in (16), the one level method reads 
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We use the Fourier series expansions for the two local errors prescribed 

by (5), (6) and replace the two expressions back in (17) giving 
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(18) 

We can solve the two second order ordinary differential equations in (18) 

and by exploiting the boundary conditions, we write the solutions in the form 

            ,
~
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2
~

,ˆ 1

~

11
1 axkekAkxe

akmm



 (19) 

            .
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We plug in the errors back to the interface conditions in (18), which yields 
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We reformulate the above expressions in matrix form 
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where 
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is the Schwarz iteration matrix. The spectral behaviour of the iteration 

matrix determines the performance of the Schwarz iterative method. The 

eigenvalues of 2cs  are 
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Finally, the reduction factor is 
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6. The Formulation of the Parallel Schwarz algorithm - Case 3 

In this scenario, we impose Dirichlet boundary conditions on the top and 

bottom of the rectangles, Dirichlet at the interfaces, and we alter the 

boundary conditions on the left and right edge of the global domain. More 

accurately, at the left edge of 1  and the right edge of .2  Neumann 

conditions are enforced. As a consequence, the Schwarz method reads 
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where t  is the top part of the boundary, b  is the bottom part, L  is the left 

edge of the domain  and R  is the right edge respectively. 

Theorem 3. The reduction factor of the Parallel Schwarz algorithm for 

case 3 is given by the formula 
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Proof. The result is proved using a similar approach to the two previous 

cases. Following the steps that were extensively explained in the two 

previous cases, the Schwarz algorithm can be written in a compact form 
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is the iteration matrix. The spectrum of the iteration matrix is 
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Consequently, we obtain 
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7. The Formulation of the Parallel Schwarz algorithm - Case 4 

For this case, we consider Dirichlet boundary conditions on bt    (top 

and bottom), Dirichlet interface conditions, Dirichlet at L  (left edge of Ω) 

and Neumann at R  (right edge of ). Therefore the Schwarz algorithm is 

     

   

 

 

     

   

 

 











































.at

on

at

in

,

at

on

at

in

22

2

2
1

12

22
2

2

1

1

1
1

21

11
2

1

R
m

bt
m

mm

mm

L
m

bt
m

mm

mm

hnu

gu

uu

fuikku

qu

gu

uu

fuikku


 

Theorem 4. The reduction factor of the Parallel Schwarz algorithm for 

case 4 is given by the formula 
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Proof. The result follows by implementing all the steps explained in 

detail in cases 1 and 2, performing all the necessary calculations. 

8. The Formulation of the Parallel Schwarz algorithm - Case 5 

For this problem configuration, we consider Dirichet boundary conditions 

on top and bottom of the rectangles, Dirichlet transmission conditions, 

Neumann at L  (left edge of ) and Dirichlet at R  (right edge of ). The 

Schwarz iterative scheme for this problem is 

     

   

 

 

     

   

 

 











































.at

on

at

in

,

at

on

at

in

2

2

2
1

12

22
2

2

11

1

1
1

21

11
2

1

R
m

bt
m

mm

mm

L
m

bt
m

mm

mm

qu

gu

uu

fuikku

hnu

gu

uu

fuikku


 

Theorem 5. The reduction factor of the Parallel Schwarz algorithm for 

case 5 is given by the formula 
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Proof. The result is obtained by finding the eigenvalues and the spectral 

radius of the iteration matrix. 

9. The Formulation of the Parallel Schwarz algorithm - Case 6 

For this particular problem, we specify the boundary conditions as 

follows: Neumann at the left and right edge of the global domain ( L  and 

,R  Neumann conditions at the two interfaces, Dirichlet on top and bottom 

 .Rt    The Schwarz method for this problem reads 
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Theorem 6. The reduction factor of the Parallel Schwarz algorithm for 

case 6 is given by the formula 
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Proof. The result follows by explicitly finding the spectrum and the 

spectral radius of the iteration matrix. 

10. The Formulation of the Parallel Schwarz algorithm - Case 7 

In this scenario, we specify the boundary conditions as follows: Dirichlet 

conditions are imposed on top and bottom, Neumann at the interfaces, 

Dirichlet at the left edge of the global domain, Neumann at the right edge of 

the whole rectangle. For this configuration, we proceed giving the Schwarz 

iterative method 
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Theorem 7. The reduction factor of the Parallel Schwarz algorithm for 

case 7 is given by the formula 
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Proof. The proof is obtained by investigating the spectral properties of 

the Schwarz iteration matrix. Computing explicitly the spectrum and the 

spectral radius of the Schwarz matrix leads to the desired formula for the 

convergence factor. 

11. The Formulation of the Parallel Schwarz algorithm - Case 8 

The boundary conditions are specified in the following way: Dirichlet on 

top and bottom, Neumann at the two interfaces, Neumann at the left edge of 

the global domain and Dirichlet at the right edge. As a result, the Schwarz 

algorithm reads 

     

   

 

 

     

   

 

 











































.at

on

at

in

,

at

on

at

in

2

2

22
1

122

22
2

2

11

1

11
1

211

11
2

1

R
m

bt
m

mm

mm

L
m

bt
m

mm

mm

gu

gu

nunu

fuikku

hnu

gu

nunu

fuikku


 

Theorem 8. The reduction factor of the Parallel Schwarz algorithm for 

case 8 is given by the formula 

 
    

    

    

    
.~

sinh

~
cosh

~
cosh

~
sinh

,,,,;
~

11

12

22

12
2121

2
8

abk

bbk

abk

aak
bbaakkrcs








  

Proof. The result follows using the concepts and the steps from the 

previously analysed configurations. 

12. The Optimized Schwarz Algorithm - Case 9 

As a last scenario, we pay attention to the Optimized Schwarz method, 

where impedance conditions are employed on the left and right edge of the 

global domain and at the two interfaces. The Optimized Schwarz method in 

strong form reads 
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Theorem 9. The convergence factor of the Optimized Schwarz algorithm 

is given by the formula 
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Proof. The proof is straightforward and it follows in the same fashion 

with the previous configurations. We can write the Optimized Schwarz 

algorithm in compact form 
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 is the Schwarz iteration 

matrix. By doing a little algebra, we obtain the reduction factor 
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13. Remarks 

From the analysis conducted in the previous sections of the paper, there 

are some remarks to be made. In case 2 and 3, we observe that the reduction 
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factors are the same, therefore the Schwarz algorithm has the same 

behaviour for these two configurations. Similarly case 1-6, case 4-8 and case 

5-7 share the same formulas for the reduction factors. It is evident that for 

zero overlap the convergence factors become 1, so the Schwarz method 

stagnates, which is a very common experience in the literature. Also, for high 

Fourier frequencies, the contraction factors rapidly decay towards zero. For 

the evanescent modes, the Performance of the Schwarz method is very good 

and the contraction factors rapidly go to zero. However, the main concern for 

the Helmholtz equation is how the algorithm performs for the propagative 

modes. In cases 1-6 and 2-3 the performance of the algorithm is not so good as 

there are oscillations appearing for the propagative modes. These cases have 

in common the following: At the left and right edge and at the interfaces, the 

boundary conditions are purely Dirichlet or purely Neumann. Now, taking 

into account cases 4-8 and 5-7, we notice that there is something in common: 

One of the boundary conditions at the interfaces and the edges differs from 

the other boundary conditions. For instance, in case 4 we have Dirichlet 

interface conditions, Dirichlet at the left edge of  and Neumann at the right 

edge of . Therefore the boundary condition at the right edge differs from the 

other ones. This enables us to have better performance of the Schwarz 

method for the propagative modes. In the table below there is comprehensive 

information for all the different configurations. The D denotes the Dirichlet, 

N denotes the Neumann, and R denotes the Robin boundary conditions. The 

Table 1. All reported cases for varying the boundary conditions. 

 t  b  L  R  1  2  prop. modes ev. modes 

Case 1 D D D D D D X  

Case 2 D D D D N N X  

Case 3 D D N N D D X  

Case 4 D D D N D D   

Case 5 D D N D D D   

Case 6 D D N N N N X  

Case 7 D D D N N N   

Case 8 D D N D N N   

Case 9 D D R R R R   
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last columns represent the propagative modes and the evanescent modes, 

where the checkmark means that the Schwarz method performs well for 

these modes and the xmark means that the algorithm performs badly for this 

regime. We notice that for all the cases, the Schwarz method behaves well for 

the evanescent modes and the convergence factor rapidly decreases to zero. 

The problem occurs when we are in the region of the propagative modes. We 

clearly see that when the boundary conditions are the same on both edges 

(columns 4 and 5), then there is a problem with the propagative modes. On 

the contrary, using different boundary conditions on the two edges helps with 

the convergence of the Schwarz method. Lastly, in case 9 where we have 

Robin conditions at the interfaces and the right-left edges, the convergence is 

improved drastically for both evanescent and propagative modes. 

14. Some Illustrations 

In this section we provide the graphs of the convergence factors as a 

function of Fourier frequency. In addition to that the eigenvalues of Schwarz 

matrices for each algorithm is exhibited. These graphs are very revealing as 

they illustrate the behaviour of the Parallel Schwarz algorithm for the 

different Fourier modes. For the plots, we consider that  h 2,01  

     ,1,04,2,1,0 2  h  where the overlap is h2  and h is the mesh 

size. The two subdomains have the same size and the height of the rectangle 

is 1. 

  

Figure 1. The convergence factor 

for different methods as a function 

of the Fourier frequency for wave 

number .k  The mesh size is 

.25.0h  

Figure 2. The convergence factor 

for different methods as a function 

of the Fourier frequency for wave 

number .10k  The mesh size is 

.25.0h  
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Figure 3. The convergence factor 

for different methods as a function 

of the Fourier frequency for wave 

number .100k  The mesh size is 

.25.0h  

Figure 4. The convergence factor 

of the Optimized Schwarz method 

as a function of the Fourier 

frequency for wave number 

.100k  The mesh size is .25.0h  

From the above convergence curves, it is evident that keeping different 

boundary conditions at the left and right edge of the global domain Ω helps 

with the convergence for the propagative modes. If the same boundary 

conditions are imposed at the two edges, then oscillations occur in the 

propagative regime. If Robin Conditions are imposed on the external edges 

and on the interfaces, the Schwarz method has good behaviour in propagative 

and evanescent regime.  

  

Figure 5. The spectrum of Schwarz 

iteration matrix (Cases 1-6) for a 

range of Fourier modes, for fixed 

wave number .100k  The mesh 

size is .25.0h  

Figure 6. The spectrum of Schwarz 

iteration matrix (Cases 2-3) for a 

range of Fourier modes, for fixed 

wave number .100k  The mesh size 

is .25.0h  
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Figure 7. The spectrum of 

Schwarz iteration matrix (Cases 

4-8) for a range of Fourier 

modes, for fixed wave number 

.100k  The mesh size is 

.25.0h  

Figure 8. The spectrum of 

Schwarz iteration matrix (Cases 

5-7) for a range of Fourier modes, 

for fixed wave number .100k  

The mesh size is .25.0h  

 

Figure 9. The spectrum of Schwarz iteration matrix (Case 9) for a range of 

Fourier modes, for fixed  wave number .100k  The mesh size is .25.0h  

15. Conclusions 

In this paper, we have analysed the performance of the Parallel Schwarz 

algorithm for the perturbed Helmholtz problem for different configurations of 

the boundary conditions at the interfaces and exterior edges. We have 

obtained the appropriate convergence factors for all the different cases and 

we noticed that using the same boundary conditions at the external edges 
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results in bad performance of the Schwarz method in the propagative regime. 

On the contrary, different boundary conditions at the external edges of the 

domain Ω result in better performance of the iterative method for the 

propagative modes. The choice of the boundary conditions is Dirichlet or 

Neumann. We did also consider the Optimized Schwarz algorithm using 

impedance conditions at the interfaces and at the left and right edge of the 

global domain. In addition to the curves of the reduction factors, the spectrum 

of the iteration matrices are provided for each method. Ultimately, Further 

analysis can be carried out for more than two subdomains [14], [15], [16] i.e. 

two, three etc., but this could be more complicated as we have more interface 

conditions. This analysis will appear in future work. 
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