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Abstract 

This research presents a comprehensive exploration of mathematical modelling for COVID-

19, with a focus on vaccination and intervention strategies. Various preventive measures, such 

as lockdowns, media campaigns, and social distancing, are analyzed for their impact on disease 

progression. The stability of Disease-Free and Endemic Equilibrium points is assessed based on 

the basic reproduction number  .0R  Sensitivity analysis identifies key parameters affecting 

,0R  with vaccination coverage and contact rate standing out as critical factors. The study 

underscores the need for persistent and intensive interventions to combat the outbreak 

effectively. Ultimately, a combination of strict interventions and increased vaccination is 

recommended to curtail the spread of COVID-19. 

1. Introduction 

The COVID-19 pandemic has presented an unprecedented global health 

crisis, requiring rapid and effective strategies to mitigate its impact. 

Mathematical modelling has become a potent tool for comprehending and 

forecasting the dynamics of infectious diseases, providing insightful data on 

the modes of transmission, effects of vaccination, and efficacy of intervention 



JAMAL HUSSAIN and JOAN LALDINPUII 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 6, April 2024 

506 

strategies. The use of mathematical modelling is essential for guiding 

evidence-based decision-making in India, a nation with a sizable population 

and distinctive demographic traits, to address COVID-19 effectively. 

The first Mathematical model in Epidemiology was the work of Daniel 

Bernoulli on the effect of variolation against smallpox in increasing life 

expectancy [1], Since Kermack and McKendrick’s pioneering work, 

mathematical models have been applied to provide a framework for 

comprehending the dynamics of infectious diseases [2]. A number of 

mathematical models have also been put forth to comprehend the COVID-19 

transmission dynamics in India. Several studies have expanded the SI [3], 

SIS [4], SIR [5], SEIR [6] by including a number of new compartments such 

as asymptomatic, isolated, quarantined, protected, death, lock-down, 

hospitalized, etc. [7-13]. 

This research aims to investigate the mathematical modelling of COVID-

19 in India, with a specific focus on studying the impact of vaccination and 

intervention measures. In this study, we also consider the period from March 

2020 to December 2020 of the COVID-19 outbreak where several preventive 

measures have been implemented in India to measure the strength of 

intervention measures. The government of India declares a nationwide 

lockdown from 24 March 2020 for 21 days [14]. In India vaccine was 

introduced on 16 January 2021, and India began the administration of 

COVID-19 vaccines. As of 25 March 2022, India has administered over 1.8 

billion doses overall. In India, 90% of the eligible population has received at 

least one shot, and 76% of the eligible population is fully vaccinated [15]. We 

shall introduce the Vaccine compartment in our model. 

The findings will help policymakers, public health professionals, and 

researchers develop focused strategies to manage the epidemic and ensure 

the health and wellbeing of the Indian population. This will support evidence-

based decision-making.  

2. Model Formulation 

We create a deterministic compartmental model QRSELLA  to describe 

the disease transmission mechanism. Let N be the total population of 

humans. The total population N is divided into six compartments: Susceptible 
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(S), Vaccinated (V), Exposed (E), Symptomatic Infection (I), Asymptomatic 

Infection  ,AI  and individuals that are either recovered or die from COVID-

19 (R). We also include Vital Dynamics: The natural human natality or 

recruitment rate denoted by  and mortality (death) rate denoted by . 

Susceptible individuals move to the Exposed compartment when they 

come into contact with Symptomatic Individuals (I) as well as Asymptomatic 

Individuals  AI  at a rate  (rate of transmission). It is reported that AI  has 

a lower chance of transmission than I (MoHFW). So we assume that 

transmission of the disease from Asymptomatic individuals  AI  to 

Susceptible individuals is less than that of Symptomatic Individuals to 

Susceptible. 

We denote the reduction in the rate of transmission from Asymptomatic 

Individuals to Symptomatic as  where .1  The new infection is given by 

 AIIS    

Susceptible Individuals who are Vaccinated move to the Vaccinated 

compartment at the rate . Since Vaccines are not 100% effective 

(www.cdc.gov), we assume that those in the Vaccination class are not at a 

complete protective level, and the Vaccinated individuals become infected and 

move into the Exposed class. We assume that this occurs at a lower 

transmission rate , where  1,0  is the decreasing coefficient. 

We adapt the model to include several intervention techniques. The use of 

preventive measures such as lock-downs, media campaigns to raise 

awareness, effective handwashing techniques, social seclusion, mask use, etc., 

as part of intervention strategies, slows the spread of disease. 

The application of the intervention suggests that there would be a 

decrease in the rate of disease transmission in terms of model parameters. 

The strength of the intervention, h where  ,1,0h  is deemed to have 

decreased at this rate of transmission. 

During implementation, the parameter  is transformed to   h1  when 

there is intervention. The Exposed individuals move to the Infected class i.e., 

AII ,  at a rate . A fraction of the population moves from Expose to the 
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Symptomatic class at a rate r, and the remaining fraction moves to the 

Asymptomatic class at the rate  .1 r   

Individuals from Symptomatic and Asymptomatic recover at a rate ,  

respectively. Each of these classes may decrease as a result of mortality , 

while an individual who shows COVID-19 Symptoms may have a lower 

chance of survival, therefore Symptomatic class decreases as a result of death 

from COVID-19 at a rate . 

Based on the assumption we propose the following model; a system of 

non-linear differential equations. The Schematic diagram is shown in Figure 

1. 

 

Figure 1. Schematic Diagram of .RSVELLA  

    ,1 SSIISh
dt

dS
A   

,VVIS
dt

dV
  

    ,1 EEVIIISh
dt

dE
A   (1) 
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Table 1. Parameter Description. 

Parameter Description Value 

 Birth rate 
 6

36559

10000

x
 

 Death rate 
 16

36559

1

x
 

 Rate of transmission 1.7399 [7] 

 Rate of transition from Exposed to 

infected class i.e., AII ,  

0.1923 [17] 

r Fraction of population moves from 

Exposed to symptomatic class 

0.4579 [7] 

 r1
 

Fraction of population moves from 

Exposed to asymptomatic class 

0.5422 

 Recovery rate of symptomatic infected 

class 

0.004165 

(assume) 

 Reduction in the transmission from 

asymptomatic, 1  

0.1002 [7] 

  Recovery rate of asymptomatic infection 0.13978 [18] 

 Rate of disease induced death 0.0175 

(COVID-19 

India 2020) 

 Rate at which susceptible individual are 

vaccinated 

0.4 (assume) 

 Rate of reduction in risk of infection due 

to vaccination 

0.2(assume) 

h Strength of intervention 0;0.5042;  

0.6544; 0.7282 

[7] 
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  ,IIEr
dt

dI
  

  ,1 AA
A IIEr

dt

dI
   

,RII
dt

dR
A    

with nonnegative initial conditions given by 

          .00,0,00,00,00,00  RIIEVS A  (2) 

All the parameters of the system (1) are assumed to be positive for all 

time .0t  

3. Mathematical Model Analysis 

3.1 Positivity of Solutions 

For the COVID-19 model system 1 to be epidemiologically realistic, it is 

necessary to prove that all the state variables remain positive for all time. 

Theorem 1. Let the initial data be    .0,,,,, RIIEVS A  Then 

the solution set             tRtItItEtVtS A ,,,,,  of the model system is non 

negative for all time t. 

Proof. Considering the non-linear system of the model (1), we take the 

first equation 

    ,1 SSIISh
dt

dS
A   

     ,1 SIISh
dt

dS
A   

       ,1 dtIISh
S

dS
A  

     ,1ln ctIIShS A   

    
,

1 ctIISh
eeS A 


 

        
.0

1 tIISh AeStS


  
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Similarly, it can also been shown that       ,0,,0,0  tItEtV  

    0,0  tRtI A  for all .0t  Therefore, the disease is uniformly 

persistent for every positive solution. 

3.2 Invariant Region 

Theorem 2. For the initial conditions (2), the solutions of system (1) are 

contained in the region 6
 R  defined by 

               .:,,,,, 6










  tNRtRtItItEtVtS A  

Proof. Let RIIEVSN A   

  IRIIEVS
dt

dN
A   (3) 

IN
dt

dN
  (4) 

N
dt

dN
  (5) 

 N
dt

dN
 (6) 

   CeNe tt  (7) 

C
e

Ne
t

t 






  (8) 

.tCeN 



  (9) 

At .,



 Nt  Clearly  

               .:,,,,, 6










  tNRtRtItItEtVtS A  

3.3 Analysis of Disease-Free Equilibrium (DFE) 0E  

The model gets DFE when the disease has zero induction 
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Taking the first equation of system (1) with 0 RQIIE A  

into consideration. 

We arrive at 

   







 00 , VS  

Then, the disease-free equilibrium (DFE) state 0E  is given by 

   
.0,0,0,0,,0 













E  

4. Basic Reproductive Number 0R  

0R  refers to the average number of secondarily infected persons infected 

by one primary infected patient during the infectious period. To obtain the 

basic reproduction number, we used the next-generation matrix method by 

Diekmann et al. [19] and Dietz [20], where  is the matrix of the new 

infection terms and  is the matrix of the transition terms. 

At disease-free equilibrium 

    












 0,0,0,0,,0E  

 
   

 
 




































0000

0000

0000

0
11

0
hh

  

 

 
.

0

001

00

000


































r

r
 

Now, 1  
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 
   
   

 
     

 
 

     


































































0000

0000

0000

0

1

1

1



h

r

h
r

 

The basic Reproduction number is given by 

 
   
   

 
     

.
1

1

0 
























r

h
r

R  

5. Stability Analysis of DFE 

5.1 Local stability of disease-free equilibrium 

Theorem 3. The Disease Free Equilibrium DEF is locally asymptotically 

stable if .10 R  

Proof. The Jacobian matrix w.r.t. system 1 is given by which implies  

   

   

 






































000

00100

0000

01100

000

01100

00

0

00

tr

zr

ShShq

V

ShShp

JDFE  

where 

       .,,,  tzqp  

Clearly, two eigenvalues of the matrix JDFE are negative such as - and -

. The remaining eigenvalues are the roots of the following Polynomial 

equation 

001
2

2
3

3
4  aaaa  

where 

   tzqptzqpa 3  
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      0
22222

2 12 rShtzqptzqpa   

     rSh  11 0  

        2222
0

2
1 31 ztqpztqprShzza   

         6211212
3

00 ztqprShrSh   

          0
2

0
23 13113 rShqqrShttp   

            3111311 000  rtShqShrtSh  

         3311 000 rzqrSzShqShr   

       3111 0  rtrqSh  

         .1111 00000 zrShzShtrShqtzRpa   

According to the Routh-Hurwitz criterion, the above equation will give 

negative roots or roots with negative real parts if the following condition is 

satisfied: 

.0

0

1

0

,0
1

,0

13

02

13

2

13
3 

aa

aa

aa

a

aa
a  

Hence, the disease-free equilibrium point 0E  of the system is locally 

asymptotically stable, when .10 R  

5.2 Global stability of disease-free equilibrium 

We now study the global stability of disease-free equilibrium, using the 

theorem by Castillo-Chavez et al. [21] 

Theorem 4. If the given mathematical model can be written in the form: 

 YXF
dt

dX
,  

    0,,,  YXGYXG
dt

dY
 (10) 

where     ,,,,,,
T

A
T

RIIEYVSX   denoting the number of uninfected 
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individuals and denoting the number of COVID-19-infected people 

respectively. Let the disease-free equilibrium of this system be 

 
  















  0,,0,0 XU  

where 0 is a zero vector. 

For the global asymptotically stable, the following condition (H1) and 

(H2) must be satisfied. 

(H1): For   0,0,XF
dt

dX
  is global asymptotically stable. 

(H2):       0,ˆ,,ˆ,  YXGYXGAYYXG  for   YX ,  

where  0, XGDA Y  is an M-matrix (the off-diagonal elements of A are 

nonnegative) and  is the region where the model makes biological sense. If 

the given system of differential equations of our model satisfies the given 

condition in (2) then the fixed point  0,0
 XU  is a global asymptotically 

stable (g.a.s) equilibrium of (2) provided ,10 R  and the assumption (H1) 

and (H2) are satisfied. 

Theorem 5. The DFE 0E  of model (1) is global asymptotically stable if 

.10 R  

Proof. First, we rewrite the system of differential equation of our model 

(1) as  TVSX ,  and   .,,,
T

A RIIEY   

Then, the DFE is given by 

 
  
















  0,,0,0 XU  

and the system  0,XF
dt

dX
  becomes 

 SS   

VSV   (11) 
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This equation has a unique equilibrium point 

  













 ,X  (12) 

which is globally asymptotically stable. Therefore, condition (H1) is satisfied. 

We now verify the second condition (H2). For model (1), we have 
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Clearly, we see that A is an M-matrix, i.e. all the off-diagonal elements of 

A are non-negative. 
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which implies that   0,ˆ YXG  for all   ., YX  Therefore, conditions 

(H1) and (H2) are satisfied. Hence, disease-free equilibrium is globally 

asymptotically stable. 

6. Stability Analysis of EE 

6.1 Existence of Endemic Equilibrium point 

Let us denote the Endemic Equilibrium by   RIIEVSE A ,,,,,1   

The Endemic Equilibrium is given by 
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6.2 Local stability of endemic equilibrium 

Theorem 6. The endemic equilibrium 1E  is locally asymptotically stable 

if ,10 R  otherwise it is unstable. 

Proof. The Jacobian matrix of the system (1) at endemic equilibrium 

point 1E  is obtained as follows: 

   
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
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
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













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ShafIa
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where 

     
AIIha 1  

  Id  

 f  
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 j  

  l  

     AIIha 131  

  .134
  VSha  

Clearly, one eigenvalue of the matrix 1EJ  is negative - and the 

remaining eigenvalues are the roots of the following Polynomial equation: 

001
2

1
2

2
3

3
4

4
5  cccccc  

where 

ljfdac 4  

   22222 2222
34

2
3 ljfaraljfdac    

     rSh 11  

djlajldfldfjrdaaflafjadlraaadjadfc  34342  

        SrhavIrSrahfjllra 111 22
313  

              SrjhSrahSrdh 111111 31  

lrdaafjllraaadjladflradaadfjc  3434341  

    222
3131 11   VIraSIrlSrahSrdahdfjl  

      SrdhalVIr 1122  

          SrjhaSrdah 1111 31  

          SrjahSrdjh 1111 31  

    SrI 12  

   lSrdahlradaadfjlc 31340 1  
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      SrdjhalVIra 1122  

      lSIrSrjdah 2
31 11  

  .12   SrjI  

According to the Routh-Hurwitz criterion, the above equation will give 

negative roots or negative real parts if the following condition is satisfied: 

0
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3
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aa
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ccc

c

cc
c  

Hence, the endemic equilibrium point 1E  of the system is locally 

asymptotically stable when .10 R  

6.3 Global stability of disease-free equilibrium 

Theorem 7. The endemic equilibrium   RIIEVSE A ,,,,,1  of 

our mathematical model is globally asymptotically stable. 

Proof. For the global stability result, we will use the method discussed in 

Korobeinikov [21] and Wake, Li and Muldowney [22]. From (1), a person was 

infected with coronavirus and then fully recovered. After that, we assume 

that a person has permanent immunity. The first five equations are 

independent of R in (1) and we will study the following sub-system. 

    SSIISh
dt

dS
A  1  

VVIS
dt

dV
  

    EEVIIISh
dt

dE
A  1  

  IIEr
dt

dI
  

  AA
A IIEr

dt

dI
 1  (13) 
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The model of the system of equation (13) is transformed into the following 

form 
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Here it is easy to find that the system of equation (14) has unique 

endemic equilibrium  1,1,1,1,11E  and the global stability of  1,1,1,1,11E  

is same as that of .1E  Thus we investigate the global stability of 

 1,1,1,1,11E  instead of .1E  

Defining the Volterra type Lyapunov function 
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From equilibrium state 1E  we have the following equations 

        SIISh A1  
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Then, differentiating L w.r.t. ‘t’ along the solution curve of the system of 

the equation of model (14) and considering the above equation gives 
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After some algebraic manipulation, we have 
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Since the arithmetic mean is greater than or equal to the geometric 

mean, we have 
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Thus it is easy to observe that 0
dt

dL
 and the equality 0

dt

dL
 hold for 

11111 ,1 vuzyx   

which corresponds to the set  ,,,:,,,,   EEVVSSIIEVS A   

.,   AA IIII  Hence from LaSalle’s invariance principle [23], the 

equilibrium 1E  of the given system is globally asymptotically stable for 

.10 R  

7. Sensitivity Analysis 

In this section, we examine the impact of the parameters used to express 

the basic reproduction number, ,0R  through sensitivity analysis. This 

demonstrates that an alteration in these parameters results in an alteration 

in .0R  It is used to identify the variables with a significant impact on 0R  and 

determine which ones should be the focus of intervention measures. 

Sensitivity indices make it possible to quantify the proportional change in a 

variable when a parameter is altered. 

The forward sensitivity index of a variable, with regard to a specific 

parameter, is used for that 
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where  .,,,,,,,,,,, hr    The analytical equation for the 

sensitivity of 0R  to each parameter it comprises can be calculated using the 

formula mentioned above. As a result, Figure 2 shows the sensitivity index of 

parameters i.e. hr ,,,,,,,,,,,    respectively on R0. The 

positive indices indicate a direct relationship between the parameters and 

,0R  that is if the parameter increases/decrease then the value of 0R  will 

increase/decrease. Therefore in order to control COVID-19 from the 

population, we need to reduce the Basic Reproduction number, we can 

achieve this by reducing the parameters which give positive indices i.e. 

,,,,,,  r  here birth rate  and rate of transmission  are the most 

sensitive parameters of ,0R  since it is not possible to control the birth rate 

we are left with the rate of transmission, we can reduce this by limiting our 

contact rate, which is why there was a suggestion like quarantine, social 

distancing, etc. If the rate of reduction in risk of infection due to vaccine  

decreases then 0R  also decreases, the higher the number of vaccinated 

people the lower the Vaccine-induced decrease in infection risk, therefore the 

Basic Reproduction number can be reduced. 

 

Figure 2. Forward sensitivity of .0R  
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The negative indices indicate that there is an inverse relationship between 

the parameters and ,0R  that is if the parameter decrease/increases then the 

value of 0R  will increase/decrease. h,,,,,,    have negative indices, 

among the μ  is the highest sensitive if the death rate increase than 0R  

decrease. The strength of intervention h has negative indices which imply 

that if we implement strict intervention measures then 0R  will decrease 

which will lead to a decrease in the Infected population. 

 

Figure 3. Variation of Infected population with time for different values of h. 

8. Numerical Simulation 

For the Numerical Simulation of the proposed model, we illustrate the 

mathematical findings using the MATLAB program, the value of parameters 

are listed in the table. Figure 3 shows the variation of the infected population 

with time t for different values of h. First, we take the strength of 

intervention h to be ,0h  which means that there is no intervention 

measure taken during this period. We consider this period to be from the 

start of March 2020 till 24 March 2020 when no action has yet been taken by 

the Government of India. 

On 24 March 2020, the Government of India declared a nationwide 

lockdown for the period of 21 days [14]. After the nationwide lockdown and by 

the Ministry of Health and Family Welfare, Government of India, many 

preventive measures for COVID-19 were taken by India. We notice that from 

COVID-19 case data from the World Health Organization, the infected case 

curve began to slope down from mid-September 2020 till the first week of 
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February 2021. In order to investigate the impact of intervention strategies, 

the strength of intervention is assumed as ,5042.0h  during the period of 

March to July 2020, where the early preventive measure has been 

implemented, the COVID-19 positive case curve keeps on increasing; 

,6544.0h  during the period from July to September 2020, where the 

increasing curve has been slow down and ,7282.0h  where strict 

intervention measures have been taken including social distancing, wearing a 

mask, awareness through various media, etc, it is noticed that the curve has 

been miraculously kept on decreasing till 8 February 2021. From Figure 3 We 

can see that by strengthening the intervention strategy i.e. by increasing the 

strength of intervention h the curve of Symptomatic infection and 

Asymptomatic infection can e positively decreased. 

Figure 4 shows the Variation of RSVEII A  with time corresponding to the 

values of 10 R  for different values of initial numbers of each compartment 

with time 0t  to 1000. Figure 5 shows Variation of SV EIIAR with time 

corresponding to 10 R  from 0t  to 40. Figure 6 shows Variation of SV 

EIIAR with time corresponding to the values of 10 R  from 0t  to 1000. 

Figure 7 shows the Variation of RSVEII A  with time corresponding to the 

values of 10 R  for different values of initial numbers of each compartment 

with time 0t  to 600. Figure 8 shows the variation of RSVEII A  with time 

for different values of h. This is to show how no intervention measure, 

implementation of the intervention, and strict intervention change the cure of 

Susceptible, Vaccinated, Exposed, Symptomatic, Asymptomatic, and 

Recovered Population. Figure 9 shows the Variation of the Infected 

population with time for different values of ,,   and h. We have 4 cases, we 

choose ,1;6544.0,5.0,5.1  h  ,5.0;05042.0,2.0  h  

,7282.0,1,2;0,0  hh  and from here we can suggest that a 

combination of strict intervention measures and increased vaccination can be 

the most effective solution in reducing the number of people infected with the 

coronavirus. 
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Figure 4. Variation of RSVEII A  with time corresponding to the values of 

10 R  for different values of initial numbers of each compartment with time 

0t  to 1000. 

 

Figure 5. Variation of RSVEII A  with time corresponding to 10 R  from 

0t  to 40. 

 

Figure 6. Variation of RSVEII A  with time corresponding to 10 R  from 

0t  to 1000. 
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Figure 7. Variation of RSVEII A  with time corresponding to the values of 

10 R  for different values of initial numbers of each compartment with time 

0t  to 600. 

 

Figure 8. Variation of RSVEII A  with time for different values of h. 
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Figure 9. Variation of the Infected population with time for different values 

of ,,   and h. 

9. Conclusion 

The mathematical modelling of COVID-19 has been explored in depth in 

this paper, with a focus on examining the effects of vaccination and 

intervention strategies. The kinetics of COVID-19 transmission and the 

efficiency of various tactics for controlling the virus’ propagation have been 

studied using mathematical modelling approaches. We examined how 

interventions affected the burden of disease. We mainly focused on the 

preventive measures that essentially slow down the development of the 

disease, such as lock-down, media awareness campaigns, adequate hand 

sanitization, social seclusion, wearing masks, etc. 

We discussed the existence and stability of Disease-Free Equilibrium and 

Endemic Equilibrium. Stability analysis of the equilibrium points shows DFE 

is locally asymptotically stable whenever the basic reproduction number, 

,10 R  and is globally asymptotically stable whenever .10 R  Also, EE is 

locally asymptotically stable whenever the basic reproduction number, 

,10 R  and is globally asymptotically stable whenever .10 R  

Sensitivity analysis for the effect of the parameters involved in the 

expression of basic reproduction number, 0R  is conducted. It shows that 

changing these factors causes 0R  to change depending on how they change. 

It is used to identify the parameters that should be the focus of intervention 

initiatives because they have a significant impact on .0R  The relative change 

in a variable when a parameter changes can be measured using sensitivity 

indices. 
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The forward sensitivity index of a variable with regard to a specific 

parameter is used for that. The most sensitive parameter is found to be , 

death rate, which is on the negative side, which means it has an inverse 

relationship with 0R  since it is not possible to control  another sensitive 

parameter which we can control in order to control COVID-19 from the 

population is , which have a direct relationship with ,0R  we can reduce this 

by limiting our contact rate, which is why there was a suggestion like 

quarantine, social distancing, etc. Also if the rate of reduction in risk of 

infection due to vaccine  decreases then 0R  also decreases, the higher the 

number of vaccinated people the lower the Vaccine-induced decrease in 

infection risk, therefore the Basic Reproduction number can be reduced. 

Parameters like  ,,,,, r  have positive indices and have direct 

relationship with .0R  h,,,,,,    have negative indices and have 

inverse relationship with R0. Numerical simulation is also performed using 

MATLAB. 

This study could give policymakers more information to help them decide 

whether to retain the strictness of an ongoing intervention plan or to let it up. 

Our study showed that more intensive action is needed to stop the illness 

outbreak in a shorter amount of time. Also, our analysis demonstrated that in 

order to effectively eradicate the condition, the strength of the intervention 

should not be weakened over time.  

In conclusion, we recommend that a combination of strict intervention 

measures and increased vaccination can be the most effective solution in 

reducing the number of people infected with the coronavirus.  
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