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Abstract 

In the present study, the new infinite numbers and functions briefly mentioned in the 

author’s previous short conference paper are here introduced, formulated and demonstrated. In 

particular, the fundamental definitions, lemmas, theorems, properties, and illustrative 

mathematical and engineering applications are presented and proved. Using the well-founded 

theory of limits of functions, the developed new infinite numbers quantify infinity (in a way 

different than past efforts) and are a useful tool for solving problems where infinity appears. 

The reason is that they allow arithmetic operations and calculus in mathematical expressions 

where infinity occurs. The set of infinite numbers is a superset of the complex numbers set. The 

extended in the infinite numbers bilateral Laplace transform, also proposed here, makes it 

possible to solve specific differential equations defined piecewise over the entire domain of real 

numbers  .,   Their solutions in general belong to the set of infinite functions. However, 

they also include the solutions belonging to the well-known real-complex functions which are a 

subset of the previous set. Solving these problems is not possible using the normal Laplace 

transform, since it is only defined for positive real values. It is interesting to note, that by using 

the infinite number-functions, long series of infinite terms can be nicely transformed into short 

elegant infinite functions whose computation is an easy task. In this way a simple, efficient 

criterion for series convergence is also developed. Furthermore, by calculating and using the 

derivatives/integrals of these infinite functions, complicated limits of infinite series of numbers, 

as well as ratios of the form   (involving series and improper integrals), can be easily 

calculated in cases where L’Hopital’s rule cannot be applied. These complex limits and ratios are 

difficult to calculate in the conventional way, as there is no general method for their calculation. 

In addition, a new numerical method is developed for the easier and more accurate computation 

of a series of numbers where the sum is not known analytically. Furthermore, the abstract 

structure of these new infinite numbers is investigated and presented. Finally, certain 
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technological applications are presented, such as complex, infinite, electrical networks (proposed 

by H. Zemanian, H. Flanders, C. Thomassen, etc) and specific kinematic problems in which 

infinity appears. In conclusion, infinite numbers easily solve problems that are quite difficult or 

impossible to solve by conventional methods.  

I. Introduction 

INFINITY represents something that is boundless or endless or 

something that is larger than any real or natural number [1]. Three main 

types of infinity may be distinguished: the mathematical, the physical, and 

the metaphysical. Since the age of the ancient Greeks, philosophers have 

engaged in many debates over the philosophical essence of infinity. The 

earliest recorded concept of infinity would probably be that of Anaximander 

(c. 610-c. 546 BC), a pre-Socratic philosopher.  

In the seventeenth century, mathematicians started working with infinite 

series and also what mathematicians (notably l’Hopital and Bernoulli) saw as 

infinitely small quantities, but infinity remained linked to unending 

processes [2]. The infinity symbol, , was introduced in 1655 by John Wallis 

[3, 4]. 

The topic of infinitely small numbers prompted the discovery of calculus 

in the late 1600s by the English mathematician Isaac Newton and the 

German mathematician Gottfried Wilhelm Leibniz. Newton presented his 

own theory of infinitely small numbers, or infinitesimals, to justify the 

calculation of derivatives or slopes. 

A more direct use of infinity in mathematics emerges with attempts to 

compare the sizes of infinite sets, such as the set of points on a line (real 

numbers) or the set of counting numbers. In a demonstration by Galileo, he 

showed that the set of counting numbers could be put into one-to-one 

correspondence with the obviously much smaller set of their squares and, 

similarly, illustrated that the set of counting numbers and their doubles (i.e., 

the set of even numbers) could be paired together. Galileo concluded that “we 

cannot speak of infinite quantities as one greater than or less than or equal to 

another”. 

Richard Dedekind, a German mathematician, proposed a definition of an 

infinite set as one that may be related to some proper subset by one-to-one 

correspondence. At the turn of the nineteenth century, the German 
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mathematician Georg Cantor extended the mathematical study of infinity by 

classifying infinite sets and infinite (transfinite) numbers, demonstrating 

that they may have different sizes [2, 5]. In this sense, infinity is a 

mathematical notion, and infinite mathematical objects are exactly like any 

other mathematical item in that they may be examined, handled, and utilized 

in the same way as any other mathematical object. Cantor defined two kinds 

of infinite numbers: ordinal numbers and cardinal numbers. The smallest 

ordinal of infinity is that of the positive integers. In 1873, Cantor clearly 

demonstrated that the set of rational numbers is the same size as the 

counting numbers; therefore, they are called countable or denumerable. 

Cantor also proved that not all infinities are equal by using a so-called 

“diagonal argument”. He was able to show that the size of the counting 

numbers is strictly less than the size of the real numbers. This outcome is 

known as Cantor’s theorem [6]. 

Cantor distinguished between a particular set and the abstract concept of 

its size or cardinality when comparing sets.  Cantor called the sizes of his 

infinite sets “transfinite cardinals”. His arguments showed that there are 

transfinite cardinals of endlessly numerous different sizes. The transfinite 

cardinals include aleph-null (the size of the set of natural numbers), aleph-

one (the next larger infinity), and the continuum (the size of real numbers). 

These three numbers are also written as ,, 10   and c, respectively. One of 

Cantor’s most important results was that the cardinality of the continuum c 

is greater than that of the natural numbers ;0  that is, there are more real 

numbers, , than natural numbers, . Namely, Cantor showed that 

.2 0
0 


c  

So, the modern mathematical conception of quantitative infinity 

developed in the late 19th century from works by Cantor, Gottlob Frege, 

Richard Dedekind, and others using the idea of collections or sets [2, 7]. 

Cantor’s ideas mainly prevailed, and contemporary mathematics now 

recognizes actual infinity as a necessary component of a consistent and 

coherent theory. Certain extended number systems, such as hyperreal 

numbers, incorporate ordinary (finite) numbers and infinite numbers of 

different sizes. Surreal numbers are the most natural collection of numbers 
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that includes both the real numbers and the infinite ordinal numbers of 

Georg Cantor. They were invented by John H. Conway in 1969. Every real 

number is surrounded by surreals, which are closer to it than any real 

number.  

Nonstandard analysis is used to reformulate calculus by using a logically 

rigorous notion of infinitesimal numbers [8, 12]. Nonstandard analysis arose 

in the early 1960s with the mathematician Abraham Robinson. According to 

him, the theory of infinitesimals was eventually replaced by the classical 

theory of limits [9, 10, 13]. In nonstandard analysis, infinitesimals are 

invertible, and their inverses are infinite numbers. These types of infinities 

are part of a hyperreal field; there is no equivalence between them, as there 

is with the Cantorian transfinites. For example, if H is an infinite number in 

this sense, then H2HH   and 1H   are distinct infinite numbers. This 

method of nonstandard calculus was fully developed by Keisler (1986) [11]. 

In addition to the above, based on the works of Flanders, Zemanian, and 

Thomassen, the theory and applications of infinite-transinfinite graphs and 

the corresponding electrical networks, the element values of which can be 

considered operators in a Hilbert-space H, were developed [14-22], [35-37]. 

Such infinite electrical networks are of practical importance since they arise 

naturally from the discretization of physical phenomena [21, 23]. According to 

Zemanian, there are very few classes of infinite electrical networks for which 

computational methods of their solution exist [23].  

In the author’s previous 4-page conference paper [38], the new infinite 

numbers and functions were briefly described. These new infinite numbers 

retain most of the properties of the real-complex numbers (arithmetic 

operations, powers, roots, etc.). In [39], the mirror infinite numbers and the 

infinite geometrical shapes with their properties were also described and 

used. 

In the present study, the fundamental definitions, lemmas, theorems, 

properties concerning the new infinite numbers and functions, and 

illustrative mathematical and engineering applications are presented and 

proved. Unlike previous attempts to quantify infinity the new infinite 

numbers are defined as limits of complex functions tending to infinity. Using 

these numbers and functions, the extended (in infinite numbers) bilateral 
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Laplace transform, also proposed here, makes it possible to solve specific 

differential equations defined piecewise over the entire domain of real 

numbers  .,   Their solutions (verified to be true) in general belong to 

the set of infinite functions. However, they also include the solutions 

belonging to the well-known real-complex functions set. Solving these 

problems is not possible using the normal Laplace transform, since it is only 

defined for positive real values. By using the infinite numbers, long series of 

infinite terms can be nicely transformed into simple infinite functions whose 

computation is an easy task. Moreover, lemmas and theorems about the 

derivatives of infinite number functions are proved, and unusual limits of 

infinite series of numbers, as well as the ratios of the form   are 

calculated in cases where L’Hopital’s rule cannot be applied. These complex 

limits and ratios are difficult to calculate with conventional methods. Also, a 

simple and efficient criterion for the convergence of series of numbers is 

developed. In addition, it is shown that the infinite numbers constitute an 

algebraic structure that is “non-Archimedean”, and, moreover, in contrast to 

Hardy fields, the set of infinite numbers is not an ordered field. Furthermore, 

by using these infinite numbers and functions, a simple-to-apply numerical 

method is developed for the easier and accurate calculation of a series of 

numbers where the sum is not known analytically. Finally, these new 

numbers are used to model, analyze, and solve technological problems where 

infinity occurs, such as complex infinite networks and specific kinematic 

problems. In conclusion, infinite numbers can easily solve problems that are 

quite difficult or impossible to solve by conventional methods. Such problems 

are those below, described by eqs. (100), (102), (110), (113), (118), (119), (120), 

(123), ((124)-(126)), also infinite electrical networks of Figures 1-3 as well as 

the problem of Figure 4. 

The rest of the paper is organized as follows: in Section II, the 

fundamental definitions and lemmas concerning the infinite numbers and 

functions are presented. Section III deals with the issues of the arithmetic 

operations and calculations on the infinite numbers. Section IV deals with the 

proposed extension of the Laplace transform in the set of infinite functions 

and the bilateral Laplace transform, as well as their applications in solving 

specific differential equations. Section V deals with the infinite series 

calculation (analytical-numerical) by using the new infinite functions, their 
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derivatives/integrals, and their properties. Section VI deals with the abstract 

structure of the new infinite numbers. In Section VII, specific number series, 

ratios of the form   where L’Hopital’s rule cannot be applied, and specific 

differential equations defined piecewise over the entire domain of real 

numbers are solved in the broader set of infinite functions. Furthermore, 

complex, difficult to solve, infinite electrical networks (proposed by H. 

Zemanian, H. Flanders, C. Thomassen, etc.) as well as specific kinematic 

problems are modeled, analyzed and solved based on the above. In Section 

VIII, the conclusions of the paper are presented. 

II. Initial Definitions and Lemmas 

If one proposes new numbers, one must establish all the necessary 

definitions, indicatively, the unit number, the inverse number, the opposite 

number, the arithmetic operations, etc. The key point in the new infinite 

numbers presented is the fact that the usual arithmetic operations and 

calculations apply and there is no contradiction. As seen in [38], the infinity 

unit,  ,  the negative infinity unit,  ,  the imaginary infinity unit,  ,i  

and the inverse of the infinity unit,  1  are defined by the following 

formulas (1)-(4). Moreover, the multiples of the infinity unit,  ,  where 

,  the negative imaginary infinity unit,  ,i  and all the natural powers 

of  were also defined [38]. 

 x
x 

 lim  (1) 

   xx
xx




limlim  (2) 

   ixxii
xx 

 limlim  (3) 

 
0

1
lim

lim

11









 


xx x

x

 (4) 

where .x  

Lemma 1. The square of the infinity unit  2  is the same as the square of 

the negative infinity unit  2  and is opposite to the square of the imaginary 

infinity unit   .
2

i  
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Proof. Based on eq. (1), the following applies: 

2
2 lim 









x

x
 (5) 

 
22

2
limlim 
















xx

xx
 (6) 

 
22

2
2

2
limlimlim 























xxixii

xxx
 (7) 

where .x  

         2227,6,5  i   

Lemma 2. The following relation is true, i.e., the negative integer powers 

of the infinity unit, , are all zero.  

 nnn 00  (8) 

Proof. Based on eq. (1): 
n

n

n

x

n x 
























 11
lim   

where x  and by using eq. (4), the following applies: 00  nn   

The following (Definition 1) completes and specifies the definition of 

infinite numbers and infinite functions briefly mentioned in [38]. 

Definition 1. By definition, each single-value, continuous, differentiable, 

and non-oscillating complex function, , of the infinity unit , that is, the 

function  ,  is an “infinite number function” which is also an “infinite 

number”. The set of all these numbers is the set of infinite numbers and is 

denoted by the capital letter A (in bold), which is the first letter of the Greek 

word for infinity: “Ao-Apiro”. 

For instance: 

          ii ln34 2
21  

xixxx
xxxx 





















 limlimlnlim3lim4

2
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  xixxx
xx 

 limln34lim 2  

where .x  

Remark. It should be noticed that the limit of a single-value, continuous, 

differentiable, and non-oscillating complex function  ,x  when x  tends 

to infinity  ,  that is  ,  it can be either infinity or a complex/real number. 

Therefore, infinite numbers also include complex numbers and constitute a 

wider set of numbers. For example, 

         


5lim5lim2lim3231 xxx
xxx

 (infinity) 

  
   

 
5.2

lim5

lim5.5lim7

5

5.57
2 













x

xx

x

xx  (rational real 

number) 

  
 

    2limlim3

lim

33
e

xx

xe
e

xx

x 










  (irrational real number) 

  
 

 

 

 
i

x

x

i
x

x

i

x

x

x

x 23
lim

lim2

lim3

lim9
2

3

9
4 

















  (complex 

number) 

      








x

x
limsinsin5  (it oscillates) 

where .x  

In the last case above, we notice that  5  oscillates, meaning that it 

does not converge to a finite number nor does it diverge to infinity, but it 

receives all the real values from -1 to +1 repeatedly. As stated in Definition 1, 

this oscillating function does not represent a single infinite number, as 

defined here. It represents a set of infinite numbers that will be presented in 

a later paper. 

Thus, according to the above, the set of infinite numbers is a superset of 

the set of complex numbers. 

Definition 2. For each different number  ,  there is a corresponding 

infinite number of the form   ,1   which is its “inverse number”. 
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For instance, for the infinite number  ,22   we can obtain its inverse 

number  ,21 2   which is equal to zero. 

III. Arithmetic Operations and Calculations on the Infinite Numbers 

Lemma 3. The sum/subtraction/product/ratio of two infinite numbers, 

 1  and  ,2   is obtained if one obtains the sum/subtraction/product/ratio 

of the respective functions  x1  and  ,2 x  where ,x  and then takes the 

limit for x tending to infinity. 

Proof. According to formula (1), the infinity unit    can be replaced by 

the limit:  .lim x
x 

 By also taking Definition 1 into account,  1  and  2  

are single-valued, continuous, differentiable, and non-oscillating complex 

functions and therefore, it holds that:      xx
xx

111 limlim 








 and 

     .limlim 222 xx
xx










 

Thus, relations (9), (10), and (11) apply: 

    















xx

xx
limlim 2121  (9) 

    xx
x

21lim 


 

    















xx

xx
limlim 2121  (10) 

    xx
x

21lim 


 

 
 

 
 x

x

x

x

x

x

x

2

1

2

1

2

1 lim

lim

lim































   (11) 

Example: 

       
x

xxx

x

1223
lim

1223 22 







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 26lim
2436

lim 2
223







xx
x

xxxx

xx
 

.262limlim6 2
2










xx

xx
 

Remark. Unlike infinity in its general consideration  ,  where 

arithmetic operations do not apply (e.g.:   undefined,   

undefined, etc), arithmetic operations are possible on infinite numbers (e.g.: 

0  also 1  also ,44   etc), given that    no longer 

represents infinity in its general determination, but its specific univocal form 

that is the infinity unit    defined by eq. (1). 

The infinite numbers can be distinguished into infinite numbers of a 

polynomial form and infinite numbers of a non-polynomial form. 

A. Infinite Numbers of a Polynomial Form 

The infinite numbers of a polynomial form are defined as shown in eq. 

(12) below [38]. 

  ,01
1

1 aaaA n
n

n
n  

   (12) 

where   01 ,,, ann   and .n  

Lemma 4. It applies that nn
n

n
n aaA   01   

  n
nn aa   01   (13) 

where   01 ,,, ann   and .n  

Proof. By using eq. (1): nn
n

n
n aaA   01   

n

x

n

x
n

n

x
n xaxaxa 


























limlimlim 01   







xxaxaxa n

x

n

x
n

n

x
n ,limlimlim 01   

    n
nn

n

x
nn aaxaa  


 0101 lim    
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Example. 

.2lim2lim5lim353 4
444

44 






















xxx

xxx
 

Remark. Therefore, if we add or subtract infinite numbers of a 

polynomial form of the same power of the infinity unit  ,  this operation is 

precisely executed as it is in the polynomials. 

Lemma 5. The following relation applies where the right-hand side of 

this equation represents the term with the highest power of the infinity unit 

 .  

n
n

n
n

n
n aaaA  

 01
1

1   (14) 

where   01 ,,, ann   and .n  

Proof.  

01
1

1 aaaA n
n

n
n  

   

01

1

1 limlimlim axaxax
x

n

x
n

n

x
n 






























  

 01
1

1lim axaxax n
n

n
n

x
 




  

 
























 n
n

n
nn

n

x

n
n

x x

a

x

a

x

a
x 0

1
111limlim   

  n
n

n
n

x
x 


1lim       where .x   

B. Infinite Numbers of a Non-polynomial Form 

Apart from the previous infinite numbers of a polynomial form, there are 

other continuous, differentiable, and non-oscillating functions of the infinity 

unit  ,  e.g., 

,lim,lim
2222

44

x

exe
ee

x

x

x

x
















  



EMMANUEL THALASSINAKIS 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 7, May 2024 

566 

,lim3lim232 xieie
x

x

x 

   



























 

 2
lnlim

2
ln

22 x

x
   etc. 

where .x  

The following (Definition 3) introduce and formulates the terms 

“Simplified form” and “Advancement” about the infinite numbers, initially 

mentioned in paper [38]. 

Definition 3. By definition, for the “Full form” of an infinite number, 

 ,  if    can be written as a finite sum of other functions 

 ,21 n   then the fastest growing one  j  (where nj 1  

is called its “Simplified form”, i.e.,  . j  Additionally, by definition, the 

remaining part of  ,  that is,    , j  is called the “Advancement” of 

the infinite number  .  Moreover, by definition, the symbol    will be used 

to distinguish the “Simplified form” from the “Full form” of any infinite 

number  .  

Remark. Based on this definition, for infinite numbers of a polynomial 

form, the “Advancement” of the full infinite number is the part of it that 

includes all the terms with the lower powers of , whereas the term with the 

highest power of  is its “Simplified form”. 

Therefore, the elimination of the “Advancement” leads to the “Simplified 

form” of an infinite number. For the sake of brevity, the “Simplified form” of 

an infinite number is abbreviated to (SF), the full form to (FF), and the 

advancement to (AD). Thus, eq. (15) applies. Hereafter, the symbol    will be 

used to differentiate between FF and SF after simplifying an infinite number. 

Since AD contains the terms with the lower powers of  (and AD and SF are 

continuous functions), eq. (16) also applies and, therefore, eqs. (17) and (18) 

are valid. 

ADSFFF   (15) 

 
 

 
 

0lim

lim

lim































xSF

xAD

xSF

xAD

SF

AD

SF

AD

x

x

x  (16) 
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11 



SF

AD

SF

ADSF

SF

FF
 (17) 

which is equivalently written as 

 
 

1lim 
 xSF

xFF

x
 (18) 

For instance, for the infinite number   ,135 34   the following 

applies: 

434 5,135  SFFF  and .13 3 AD  

Lemma 6. Suppose that the infinite number A of the form of the following 

function has the powers ,nd  which are real but not natural numbers. Prove 

that the simplified form SF of A is given by eq. (19) below (where the symbol 

   is used as per Definition 3). 

11
11

dd
n

d
n aaA nn  

   

where    njdj ,,1   and 11 ddd nn     and 

  11 ,,, aann   

.nd
nA    (19) 

Proof. According to the above, respectively as in a polynomial form 

numbers (Lemma 5), it is similarly proved that the simplified form of A is 

given by the relation (19). Namely, by multiplying and dividing by .nd
n   

Examples: 

 Using the above lemmas and definitions, the following calculations hold 

about the infinite numbers 1
11

d
A   and ,2

22
d

A   where 

 21,  and ., 21 dd  

if  2112121
1 AADAAAdd

d
  and 1ASF    

if  1222121
2 AADAAAdd

d
  and 2ASF   

if   dAAddd  212121  
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For instance:  0.1 4.03.01004.0 1.010   

Also,    21
2121

dd
AA


   (20) 

and    21
2121

dd
AA


   (21) 

 Find the absolute values of  that satisfy the infinite numbers equation: 

 
  lnln33 ei  

Using formula (1), the previous equation becomes: 

  xex
x

x

x

i

x
lnlimlimlim ln33






  (22) 

where: 

   xixxexx
x

xi

x

i

x
lnsinlncoslimlimlim 3ln33 






 (23) 

From eqs. (22) and (23) it follows: 

  


xxxixx
xxx

lnlimlimlnsinlncoslim 33  

  
 3

ln
limlnsinlncoslim

x

x
xix

xx
 

  1lnsinlncoslim 


xix
x

 

Obviously, we reach exactly the same result if we work directly with , 

without using the limits. It is noted that, in general, the solutions of the 

infinite numbers equations are infinite numbers. 

Lemma 7. The commutative and associative laws for addition and 

multiplication also apply to infinite numbers. 

Proof. By taking into account Definition 1, the functions    ,, 21   and 

 3  (below) are single-valued, continuous, differentiable, and non-oscillating 

complex functions, and thus, the following applies, where .x  
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Commutative law for the addition: 

       xxxx
xxxx

212121 limlimlimlim 















 

       















121212 limlimlimlim xxxx

xxxx
 

Associative law for the addition: 

       






























xxx

xxx
limlimlim 321321  

             xxxxxx
xxx

321321 limlimlim 


 

              


321321lim xxx
x

 

Similarly, the rest of the above laws are proven.   

IV. Extension of Laplace Transform and Bilateral Laplace Transform 

to the Set of Infinite Numbers 

Since we have quantified infinity using infinite numbers, it is possible 

and would be a good idea to calculate the Laplace transform over the entire 

frequency spectrum (also for values of  , iss   for which the 

corresponding generalized integral does not converge). In ref. [38], the 

Laplace transform extension in the wider set of infinite functions is 

introduced by using the formula (24) below: 

      








 
t

t

t

t

stst dtetfdtetfsF
0 1

,  (24) 

where ,,0  st  and  tf  is a single-value, continuous, differentiable, 

and non-oscillating real function and is, therefore, integrable on  .,0    

Additionally, the bilateral Laplace transform (or two-sided Laplace 

transform) in the wider set of infinite functions is introduced by using the 

formula (25) below: 

      








 
t

t

t

t

stst dtetfdtetfsF ,  (25) 
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where ,,  st  and  tf  is a single-value, continuous, 

differentiable, and non-oscillating real function and is, therefore, an 

integrable on  .,    

Based on the above, the Laplace transform extension and bilateral 

Laplace transform of the unit function   1tf  and rump function   ttf   

for 0s  and 0s  (in infinite numbers) were estimated [38]. 

Lemma 8. The Laplace transform of   tetf   where   for s  

and s  (in infinite numbers and functions) is given by the following 

formulas, respectively: 

 
   

as

e

as

e
sF

asas









1
   for s  (26) 

and   



1

sF   for s   (27) 

Proof. For ,s  according to eq. (24), the following applies: 

   
 














t

t

as
tas

as

e
dtesF

1

1
 (28) 

Thus, 

for   
1

:s F s
s

  
 

 (29) 

for   
   1

:
s a s a

e e
s F s

s a s a

     


    
 

 (30) 

Finally, for ,s  eq. (24) becomes 

   















t

t

t

t
tdtdtesF

1 1
1

0 1
1   (31) 

Moreover, by using relation (25), the bilateral Laplace transform for 

,s  is calculated: 

 
 












t

t

as
stat

as

e
dteesF   (32) 
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Theorem 1. The Laplace transform of the sinusoidal functions 

   ttf  cos  and    ,sin ttg   where  is a real constant, for 0s  and 

0s  (in infinite numbers) are given by the following formulas, respectively: 

    s

s

e
sF

s








arctancos
22

   for ,0s  

 
 





sin
sF    for 0s  

    s

s

e
sG

s








arctansin
22

   for ,0s  

 
 






cos1
sG    for .0s  

Proof. When using relation (24), it holds that 

   





t

t

stdtetsF
0

cos  (33) 

   





t

t

stdtetsG
0

sin  (34) 

Now, let us take expression A: 

       









 
t

t

st
t

t

st dtetidtetsiGsFA
00

sincos  

   




























t

t

Tsi

T

Tt

t

tsi

T

stti

si

e

si

e
dtee

0
0

1
limlim  

   

si

e

si

e
A

siTsiw

T 













11
lim  (35) 

From eq. (35), it follows that  

 on the one hand, for ,0s  

2222 







s
i

s

s
A  (36) 
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 on the other hand, for ,0s  after the calculations, 

  









22

arctan

s

ee
A

sis

 

  s
s

e
A

s








arctancos
22

 

   



















s
s

e
i

s

arctansin
22

 (37) 

Hence, as expected, for ,0s  from (33), (34), (35), and (36), it follows 

that 

 
22 


s

s
sF  (38) 

 
22 




s
sG  (39) 

Additionally, for ,0s  from (33), (34), (35), and (37), it follows that 

    s
s

e
sF

s








arctancos
22

 (40) 

    s
s

e
sG

s








arctansin
22

 (41) 

Finally, for ,0s  the relations (33) and (34) become 

   
   


















t

t

t
dttsF

0 0

sinsin
cos  

   
     























t

t

t
dttsG

0 0

cos11coscos
sin  

Therefore, for ,0s  

 
 





sin
sF  (42) 

 
 






cos1
sG   (43) 
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Solving specific differential equations by using infinite numbers and 

functions 

As is known, the Laplace transform is often used as a mathematical tool 

to solve ordinary differential equations. The method, presented here, for 

solving specific differential equations using the infinite numbers and 

functions will be best demonstrated and illustrated by means of a typical 

example. Let us look at the following specific differential equation that is 

defined piecewise over the entire domain of real numbers, ,t  (and not 

only on positive real numbers), where, as is known, for ,0t  we cannot 

obtain the Laplace transform (without using infinite numbers). 

     tftyty     where   1lim 


ty
t

 (44) 

and where 

  tetf 3  for  5, t  (45) 

  2tf  for   ,5t  (46) 

Proof. By using infinite numbers/functions, we can certainly obtain the 

bilateral Laplace transform of eq. (44); that is, over the entire domain of the 

real numbers  .,   The problem cannot be solved by using the one-sided 

Laplace transform. It is noted that, for the bilateral Laplace transform, the 

derivative property is as follows: 

      




 stetyssYtyL  (47) 

where  L  is the Laplace transformation symbol. 

Additionally, when using infinite numbers, the limit,   ,1lim 


ty
t

 is 

equivalently written as   .1y  

Based on eq. (52), eq. (51) is transformed: 

         




 
t

t

stss dtetfsYeyeyssY  

where, for ,3s  we have 



EMMANUEL THALASSINAKIS 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 7, May 2024 

574 

       




 
t

t

sts dtetfsYeyssY  

and since   ,1y  we have 

     




 
t

t

sts dtetfsYessY  

  












 
0 5

0 5

33 2
t

t

t

t

t

t

ststtstt dtedteedtee  

   
  













 
0 5

0 5

33 2
t

t

t

t

t

t

sttsts dtedtedte  

   
















 







t

t

st

t

t

ts
t

t

ts e
s

e
s

e
s

5

5

0

3
0

3 2

3

1

3

1
 

   

s

e

s

e

s

e sss 5533 20

3

1

3

1  










  

   

s

e

s

e

s

e sss 5533 2

33









  (48) 

Therefore, 

   
   







 


s
sss

e
s

e

s

e

s

e
sYs

5533

2
33

1  

 
 

   

 

      11
2

3131

5533















s

e

ss

e

ss

e

ss

e
sY

ssss

 

Thus, 

 
 

 

 

 

 

 

 

 34

1

14

1

34

1

14

1 5353533















s

e

s

e

s

e

s

e
sY

ssss

 

11
22

55









s

e

s

e

s

e sss
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Furthermore, 

 
 

 

 

 

 

 14

1

34

1

14

1 15
20

531
4













s

e
e

s

e

s

e
esY

sss

 

 

 

   

11
22

34

1 115
5

535















s

e
e

s

e
e

s

e

s

e ssss

 

It is noted that the inverse bilateral Laplace transform of the expression 

 

 
,





s

e as

 where ,s  is 

 

 
   tt

s

etue
s

e
L 


 















1  

Indeed, 

   














  
 stsstt e

as
dtedtee

1
 

     











s

e

s

ee sss

 

Hence, by taking the inverse Laplace transform of  ,sY  we have 

         tuetueety tt 34

4

1

4

1
 

       52525
4

1
5

4

1 5320   tueetutuetuee ttt  

    tuee t  

Since    ,1tu  we obtain the solution: 

     5
4

1
5

4

1

4

1

4

1 32034   tuetueeeeety tttt  

    tt eetueetu   5252 5  (49) 

Relation (49) can be written equivalently: 

For ,5t  

  ttt eeeeety   34

4

1

4

1
 (50) 
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For ,5t  

  tttttt eeeeeeeeeety   532034 22
4

1

4

1

4

1

4

1
 

tttt eeeeeeee   5204 22
4

1

4

1
 (51) 

Let us now proceed to verify the above solution generally described by eq. 

(49). First, we will examine whether eq. (49) and, consequently, eq. (50) 

satisfies the specific initial condition, i.e., if   1y  holds. For ,t  eq. 

(50) is transformed into eq. (52): 

    eeeeey 34

4

1

4

1
 

  1
4

1

4

1 033   eeeeey  (52) 

Therefore, the specific initial condition (which is a limit on minus infinity) 

is satisfied. 

Let us now see if the original differential equation (44) is also verified by 

the solution in question. To this end, let us form the derivative  .ty  

For ,5t  

  ttt eeeeety   34

4

3

4

1
 (53) 

So, based on eqs. (50) and (53), it holds that     tetyty 3  when ,5t  

as it was expected. 

For ,5t  

  tttt eeeeeeeety   5204 2
4

1

4

1
 (54) 

So, based on eqs. (51) and (54), it holds that     2 tyty  when ,5t  

as it was also expected. 

Hence, it is confirmed that eq. (49), which is written in infinite numbers, 

is indeed the solution to the problem, in the broader set of infinite functions. 

Certainly, the first and last terms of eq. (49) are infinite numbers, which, 
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however, are zero. Therefore, they can be omitted, and consequently, our 

solution is finally described by the function (55), which is a real function. 

         52525
4

1
5

4

1

4

1 53203   tueetutuetueeety tttt   (55) 

Remark. Furthermore, if we solve the above problem (following the same 

procedure) but for   tetf 3  instead of   ,3tetf   we arrive at the solution 

below: 

     5
2

1
5

2

1

2

1

2

1 31032   tuetueeeeety tttt  

    tt eetueetu   5252 5  (56) 

However, in this solution, the first term is an infinite number, which is 

infinity and not zero, and therefore it cannot be omitted. So, this new 

differential equation has a solution in the broader set of infinite functions, 

but it does not have a solution in the set of real functions. The reason is that, 

in this differential equation, the condition   1lim 


ty
t

 cannot be satisfied 

(in real numbers) since the exponential terms with the type ,3tCe  where 

,C  for t  all become   and do not cancel each other. 

Consequently, as is shown above, the Laplace transform is extended, and 

now it is defined in the larger set of infinite functions for the values of s 

where it does not converge (and hence, it was not defined in the narrower set 

of complex functions). Additionally, the bilateral Laplace transform can be 

calculated using infinite numbers, even in the cases where the corresponding 

integral tends to infinity. As the Laplace transform is often used in applied 

mathematics and physics, it could be useful for applications where a 

conclusion cannot be drawn due to the divergence of calculations. 

V. Derivatives/Integrals of Infinite Number Functions and Infinite 

Series Calculations 

Lemma 9. The derivative/integral of an infinite number function,  ,  is 

calculated if one obtains the derivative/integral of  ,x  where ,x  and 

then one takes the limit for x tending to infinity. 
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Proof. According to Definition 1, an infinite number function is a 

function  ,  where  x
x 

 lim  and    is any single-value, continuous, 

differentiable, and non-oscillating complex function. Since each continuous 

differentiable function  ,x  where ,x  has a derivative  x  which is 

also a continuous function, formula (57) holds. Also, since the integral of a 

continuous function  ,x  where ,x  is also a continuous function, 

formula (58) applies. Finally, relation (59) holds. 

 
   xx

d

d

xx














limlim  (57) 

      








dxxdxxd

xx
limlim  (58) 

   dxxdd
xx 







 limlim  (59) 

Thus, the derivative/integral of an infinite number function,  ,  is 

easily calculated from the derivative/integral of the function  ,x  where 

,x  if, in the position of x, we consider . For example, 

 





1
ln

d

d
 

  Cd 55      where .C  

Remark. Based on the above, and if  xF  is the integral of the function 

 ,xf  where ,x  the improper integral of  ,xf  using infinite numbers, is 

as follows: 

         .0lim

00 0
FFxFdxxfdxxf

x

t

x xt








    

Definition 4. By definition, a series of infinite terms, ,nA  is called 

ordinary if this series presents n  in its (nth) term and not in all its 

terms. 

For example, for ,n  the following series 

 
n

An
1

3

1

2

1
1  is an ordinary series, whereas the series 
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1 2
ln ln lnn

n
A

n n n
       is not an ordinary series since it presents n in 

all the terms of the series. 

When taking Definition 4 into account, the following theorem 

complements and formulates the calculations of the derivatives of infinite 

number functions, as briefly mentioned in [38]. 

Theorem 2. The derivative of an ordinary series of numbers, ,nA  written 

as an infinite number function,  ,A  is the last term (or, equivalently, the 

average of the last terms) of this infinite number function if the criterion of 

equality between them is satisfied. 

Proof. Based on eqs. (57), (58), and (59), the following also applies: 

   
   

dx

dxxx
x

dx

d

d

d

xx




 
limlim  

   
   














d

d

dx

dxxx

x

xx

lim

limlim

 

or    
   

.





 d

d

d

d
 (60) 

With the use of infinite numbers, the ordinary series, ,nA  below can be 

scripted as an infinite number function,  .A  

  nn aaaA 21     where Nn   

   aaaA 21  (61) 

As an example, the series   2222 321 nAn  can be 

transcribed as the infinite number function   .321 2222  A   

Then, according to eq. (60), the derivative of the infinite function,  ,A  is 

given by (62). 

 
   

.





 d

dAA
A

d

d
 (62) 
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The infinitesimal dx  is an infinitely small quantity of x (where ,x  

and hence it is true that   0xdx  (for .0x  Additionally, based on eqs. 

(1) and (59), it holds that 

 

 
  00limlim

lim

lim


















xx
x

x

x

dx

x

dx
d

 

Thus, .0


d
 

Therefore, considering that   ,0d  we can assume ,1d  given that 

.01   Thus, eq. (62) is transformed into eq. (63) if, instead of ,d  we 

assume 1. Moreover, instead of ,1d  we can also assume 2d  or 

3d  or ,d  when   since  a0 . 

 
   

   1
1

1






AA

AA
A

d

d
 (63) 

Hence, 

       


aaaaaaaA
d

d
12121   (64) 

Consequently, the derivative of the infinite series function  A  is equal 

to its last infinite term  .a  

Nevertheless, if 2d  is assumed instead of ,1d  then eq. (62) is 

transformed into eq. (65) and finally into eq. (66). 

 
   

2

2




AA
A

d

d
 (65) 

which implies 

 
   

22

122121  







aaaaaaa
A

d

d 
 

or 

 
2

1  




a
A

d

d
 (66) 
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Hence, when taking the above into account, formulas (64) and (66) as well 

as all the corresponding formulas that arise for ,4,3,2,1d  should be 

equal to each other, given that the derivative of  A  should be the same in 

all these cases. This means that it is necessary to apply the following 

condition (criterion): 










 32

121 aaa
 

Therefore, this criterion should always be taken into consideration before 

using just the last term as the derivative of an ordinary series.  

Let us now see the following examples that show when the above 

criterion is satisfied and the derivative can be determined: 

Consider the following ordinary series ,nB  which is written in infinite 

numbers as  B  (below). 

    22222 1321 nnBn  

    .1321 22222  B  

According to the above, its derivative is expressed either by its last term 

or, equivalently, by the average of the last terms. So, the following criterion 

must therefore apply: 

     








3

12

2

1 22222
2  

Since 1  can be replaced by  (similarly for 2  etc), we find that the 

above criterion is satisfied; thus, the derivative does not change value if 

instead of the last term  ,2  we use the average of more last terms. 

However, let us now look at the case of the following ordinary series of 

numbers, ,nL  which is written as  .L  This is a very fast-growing series. 

   nn
nL 22222 1321  

    22222 1321 L  
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The above criterion imposes that 












3

222

2

22
2

121

 

But this is not true since 










2
4

3

2

222

2

22 1

 

Additionally, 

.2
12

7

3

22242

3

222 12










 

Therefore, in this case, the derivative of  L  cannot be calculated by the 

above method since the respective criterion does not apply. This usually 

happens in a rapidly increasing series, ,nL  where n is in the exponent of the 

nth term .nl  For example, n
nl 2  or n

nl 3  or ,n
n nl   etc. 

In addition, it should be noted that there are cases of series of numbers 

where the nth term is more complicated than in the above examples, and it 

can be a whole expression. 

For example, by considering the following ordinary series in eq. (67), it is 

apparent that this series is not produced only from the fraction ;
3

1








n

 the 

whole expression 






 
 nn 3

1

23

1
 constitutes its nth term (containing n ). 




 n
nn

An 
3

1

23

1

6

1

4

1

3

1

1

1
 (67) 

By using infinite numbers, this series is written as eq. (68): 

 






3

1

23

1

6

1

4

1

3

1

1

1
A  (68) 

where it is obvious that its derivative is the whole expression of the right-

hand member of eq. (69), given that the aforementioned criterion is also 

satisfied.  
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 






 3

1

23

1
A

d

d
 (69) 

Indeed, since 1  can be replaced by , the respective criterion is 

satisfied: 

   
































 2

13

1

213

1

3

1

23

1

3

1

23

1
 

Theorem 3. An ordinary infinite series (a series with infinitely many 

numbers) converges if it can be written as a simple infinite number,  ,A  that 

represents a finite value number and not infinity (series convergence criterion).  

Proof. Using the infinity unit,  ,  we can write any infinite series of 

numbers as  ,A  and by considering Theorem 2, we can easily find the 

derivative of this series (if the respective criterion is also fulfilled). In 

addition, by using integration, we can calculate, again, the initial series  A  

as a simple infinite number. If this final infinite number represents infinity, 

then it is obvious that the series diverges; otherwise, it converges (finite value 

number). This is a simple series convergence criterion that is easy to apply 

and has a wide range of applications.  

Examples. Let us consider the previous series from eq. (67), where we 

saw that its derivative is given by eq. (69). By using integration, we obtain 

relation (70): 

     















 ddA
d

d
A

3

1

23

1
 

     



















 Cdd ln
3

1
23ln

3

1

3

1

23

1
 

  CC 










 3ln

3

123
ln

3

1
     where .C  (70) 

So, according to eq. (70), the series is equal to a finite number, and, 

therefore, it converges. 

On the other hand, if we consider the same series of eq. (67) but with all 

of its individual fractions being positive, as shown in eq. (71), then the 

respective integral is calculated as in eq. (72). 
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 






3

1

23

1

6

1

4

1

3

1

1

1
A  (71) 

      CdA 












  ln
3

1
23ln

3

1

3

1

23

1
 

     CC  23ln
3

1
23ln

3

1 2  

  C 23ln
3

1
    where C  (72) 

So, based on Theorem 3, the series is calculated as being equal to infinity, 

and therefore it diverges. 

Lemma 10 completes and formulates some of the calculations mentioned 

in [38]. 

Lemma 10. The harmonic series that diverts is an ordinary series, and its 

value in infinite numbers is given by eq. (73) below, and the limit of equation 

(74) also applies. 

C


 ln
1

3

1

2

1
1      where C  (73) 






n

n

n

n
1

1

2

1
1

ln
lim


 (74) 

Proof. When taking into account the fact that the harmonic series that is 

depicted in eq. (75) presents n  in its (nth) term and not in all its terms, 

it is, therefore, an ordinary series according to Definition 4. Thus, Theorem 2 

applies. By using infinite numbers, the series in eq. (75) is written as formula 

(76), and according to Theorem 2, its derivative is equal to its last term 1  

(eq. (77)), given that the respective criterion is also fulfilled. 

 n
n

An 
1

3

1

2

1
1  (75) 

 



1

3

1

2

1
1 A  (76) 

 





1
A

d

d
 (77) 
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By integrating in eq. (77), the following is obtained: 

     





 ddA
d

d
A

1
 

  CA  ln     where C  or 

C


 ln
1

3

1

2

1
1   (78) 

Therefore, according to Theorem 3, the harmonic series deviates and 

tends to infinity and, of course, relation (78) calculates its value in infinite 

numbers, where, as is known, C is the Euler-Mascheroni constant 

 .57721.0 C  The left-hand side of eq. (78) gives the full form (FF) 

while the  ln  part of the right-hand side is the simplified form (SF), and 

finally, the real constant C is the advancement (AD). It is interesting to note 

that the derivative of SF is ,1   which is also the derivative of FF (so, both 

are of the same degree, as expected). 

Furthermore, according to Section III and (eqs. (17) and (18)), from eq. 

(78), the following is obtained: 

1
1

2

1
1

ln








 (79) 

or equivalently 

1
1

2

1
1

ln
lim 




n

n

n 
 (80) 

Hence, the limit of eq. (80) is proved. It should be noted that if we take 

the average of the last two terms of eq. (76) as the derivative of the infinite 

series  A  (instead of only the last term), we come again to the same result 

of eq. (80), as is shown below. The same happens if we obtain more of the last 

terms of this series: 

  















1

1

1

2

1
A

d

d
 

     















 ddA
d

d
A

1

1

1

2

1
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          CC  lnln
2

1
ln1ln

2

1
 

C ln      where C   

Consequently, according to the above, an ordinary series of infinite terms 

can be transformed in an equivalent manner as a simple infinite number 

function if one takes the derivative of the series, which is expressed by its last 

(infinite) term and proceeds to its integration. Of course, a condition for doing 

this is that the relevant criterion applies. However, what if  (or a function of 

it), in addition to the last term, also appears in all the terms of the series (not 

ordinary series), as is characteristically shown in the following series (81): 

  .
1321

22222 
















 A  (81) 

Certainly,  1A  is then given by relation (82): 

 
       

.
1

1

1

3

1

2

1

1
1

2222












 A  (82) 

However, in this case, the difference,    ,1 AA  does not result in 

the last term, ,2  of the series  A  since the remaining  1  terms do 

not cancel each other during the subtraction; therefore, the last term of the 

series,  ,A  no longer expresses the derivative of the series.  

Of course, the same is true for the following series, where  appears 

within the  ln  function in all terms of the series: 

  .ln
12

ln
11

ln
1

,











 A  

Theorem 4. If a series, ,nA  of infinite terms (which, when using infinite 

numbers, is written as  ,A  where th is its last infinite term) includes  (or a 

function of ) in all the terms of the series, then can  appearing in all terms be 

replaced by the natural number, n, so that the series is converted into a new 

ordinary series (only having  in its last term). In this new series, the last term 

is its derivative, where by integration, the equivalent of the new series is 

obtained, and, furthermore, by setting ,n  the equivalent of the original 

series, ,nA  can be calculated. 
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Proof. Consider the following series (83): 

  ., ,,2,1   aaaA   (83) 

If , which appears in all the terms of the series,  ,, A  is replaced by 

the natural number, n, then we obtain the following new series:  nA ,  (see 

eq. (84)), which is an ordinary series where  only appears in its last term. 

  ., ,,2,1 nnn aaanA    (84) 

Moreover, relation (85) holds that 

   .,lim, nAA
n




 (85) 

In this new series,  ,, nA   the last term n,  expresses its derivative 

since eq. (86) applies: 

     nnnn aaaanAnA ,,1,2,1,1,     

  .,,1,2,1 nnnn aaaa     (86) 

Consequently, when integrating the last term, n,  (derivative), we 

obtain the equivalent of the new series:  ., nA   Finally, according to eq. (85), 

when taking the limit of  nA ,  of n tending to infinity  ,  the equivalent of 

the original series,  ,, A  is calculated.  

Examples. Let us now look at non-ordinary series (81). If we replace  

appearing in all the terms of the series with n, we obtain relation (87), where 

the last term  2n  of this new series  nA ,  now expresses its derivative. 

  





 n
nnnnn

nA
22222

1321
,   (87) 

Therefore, by integrating the last term: derivative  ,2n  we obtain 

    .
2

11
,

2

222  


















 C

n
d

n
d

n
nA  (88) 

It is noted that in this case, the constant due to the integration of the 
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infinite number function is not a real number, C, but a function,  ,C  one 

degree lower than the calculated function, ,22  and, more specifically, 

  ,21 CCC   where ., 21 CC  In other words,  C  is the advancement 

of the calculated integral .22  That is, it holds that 

  .
2

11
, 21

2

222  


















 CC

n
d

n
d

n
nA  

The reason is that if we take the derivative of the above integration result 

(see relation (89)), we obtain  ,1C  which is the infinite number, , in its 

generality, i.e., with an advancement, .1C  

121

2

2
CCC

d

d



















 (89) 

Furthermore, when taking the limit of  nA ,  of n tending to infinity, we 

have 

   
2

1

2

1
,lim, 21

2

2






















CCnAA

n
 (90) 

Alternatively, without using the infinite numbers, series (81) is calculated 

as shown in eq. (91). 











 2222

321
lim

n

n

nnn
A

n
n   

 
 

2

11
lim321

1
lim

22






nn

n
n

n nn
  

.
2

1

2

1

2

1
lim 







 
 nn

 (91) 

Hence, the result of eq. (90) is the same as that of eq. (91), and thus, it is 

confirmed to be the correct one. 

Let us now take another non-ordinary series, that of eq. (92): 

  .
321

,
4

3

4

3

4

3

4

3













 A  (92) 



NEW INFINITE NUMBERS TO QUANTIFY INFINITY … 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 7, May 2024 

589 

We form the series  ,, nA   i.e.,  appearing in all terms is replaced by 

.n  

  .
321

,
4

3

4

3

4

3

4

3

nnnn
nA


   

Consequently, by integrating its last term,  ,43 n  we obtain 

   















 43

2
2

3
1

4

4

3

4 4

11
, CCCC

n
d

n
nA  

where 4321 ,,, CCCC  

Also, here, the advancement  C  is a polynomial that is one degree lower 

than the infinite number function .44  Furthermore, when taking the limit 

of  nA ,  of n tending to infinity, we have 

    




















43

2
2

3
1

4

4 4

1
,lim, CCCCnAA

n
 

4

1

4

1
4
4

3
3

2
21 













CCCC
  (93) 

Alternatively, without using the infinite numbers, series (92) is calculated 

as shown in eq. (94): 













 


 4

3

4

3

4

33 321
lim

nnnn
A

nn
n   

 
 

4

11
lim321

1
lim

22

4

3333

4






nn

n
n

n nn
  

 
2

2

2

2

4

12
lim

4

1
lim

n

nn

n

n

nn








 

4

1

4

1

2

1

4

1
lim

2











 nnn
 (94) 

Therefore, the result of eq. (93) is the same as that of eq. (94), and thus, it 

is confirmed to be the correct one. 
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Let us now take a more complex case and calculate the limit, LIM, of 

expression (95): 

n
n

nn

nnnLIM
n ln

ln3ln32ln21ln1

lim
2222







 (95) 

By using the infinite numbers, the series of the numerator of expression 

(95) is written as per eq. (96). 

 
2222

ln3ln32ln21ln1
,













 A  (96) 

We form the series  ., nA   

  


 n
nnnn

nA
2222

ln3ln32ln21ln1
,   (97) 

Consequently, by integrating the last term: ,
ln

2n


 we obtain 

   


















 21

22

22 4
ln

2

1
ln

1
, CC

n
d

n
nA  

where ., 21 CC  

Furthermore, by taking the limit of  nA ,  of n tending to infinity, we 

have 

    























21

22

2 4
ln

2

1
,lim, CCnAA

n
 

.
4

1

2

ln

4

1

2

ln
2
21 













CC
 (98) 

Therefore, eq. (95) finally transforms into eq. (99), and thus, .21LIM  

2

1

ln
4

1

2

ln







LIM  (99) 

Of course, in all the above cases, the relative criterion of the series 

applies. 
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It is noted that in some cases (as mentioned above), these non-ordinary 

series can be solved more simply if  (or a function of ) can be extracted as a 

common factor of the series. In this case, the series turns into an ordinary 

series, where its derivative as well as its integral can be easily calculated. For 

example, 

 
22222

1321


















 A  

 


 321
1
2

 

Given that 

 
2

1 21 2 3
2

d C C


              where 1 2,C C  real numbers 

it applies that 

 
2

1

2

1

2

1
2
21

21

2

2



























CC
CCA  

However, this (i.e., extracting a common factor in a non-ordinary series) 

is not always possible, as, e.g., in the following series, where n (or  

respectively) appears inside the  tan  function, and where we must use 

Theorem 4. 








 
 n

n

nnnnn
A

n
n tan

12
tan

11
tan

1
lim   (100) 

 











 tan

12
tan

11
tan

1
, A  

We form the series  nA ,  

  


 n
nnnnnn

nA tan
12

tan
11

tan
1

,   

Consequently, by integrating the last term, ,tan
1

nn


 we obtain 

  ,coslncosln
1

tan
1

,
n

C

n
C

n
n

n
d

nn
nA 










 





   

where C is a real number. 
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Furthermore, by taking the limit of  nA ,  of n tending to infinity, we 

have 

   










C
nAA

n
cosln,lim,  

   .615626.01cosln   (101) 

Therefore, it is interesting to notice that the sum of the infinite terms 

(limits), which are written below and are all zero (tending to zero), nicely 

results in the number:  .1cosln  

.tan
1

lim,,
2

tan
1

lim,
1

tan
1

lim 
























 n

n

nnnnn nnn
  

This result is confirmed numerically, since the sum of the first thousand 

terms of the series equals 0.616405.... Let us also look at the following non-

ordinary series, where, again, it is not possible to extract n (contained within 

the logarithm in all terms of the series) as a common factor: 








 
 n

n

nnnnn
A

n
n ln

12
ln

11
ln

1
lim   (102) 

 











 ln

12
ln

11
ln

1
, A  

However, we form the series  nA ,  

  


 n
nnnnnn

nA ln
12

ln
11

ln
1

,   

Consequently, by integrating the last term, 
nn


ln

1
 we obtain 

      


 ndd
n

d
nn

nA lnln
1

ln
1

,  

      .ln
1

lnln
1








 


 C
nn

Cn
n

 

Furthermore, when taking the limit of  nA ,  of n tending to infinity, we 

have 



NEW INFINITE NUMBERS TO QUANTIFY INFINITY … 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 7, May 2024 

593 

    






 









CnAA

n
ln

1
,lim,  

11ln 








C
     where .C  (103) 

In conclusion, complicated limits and series can be easily calculated using 

this general method with infinite numbers, which would be difficult to 

calculate otherwise.  

As we have seen in the previous relations ((70), (73), (88), etc.), the 

calculation of the integral of the infinite number function  A  also includes 

the constant C or, more generally, the advancement  ,C  which was not 

necessary to calculate in the aforementioned examples. However, a question 

remains whether it is possible to calculate it, as is the case for the integrals of 

real functions   xxf ,  (where the corresponding constant is calculated 

from the initial conditions, i.e., for .0x  

Theorem 5. If the series  aaa 21  can (by integrating its 

derivative) be written as a simple infinite number    , CA  where  C  is 

the advancement, then by setting, sequentially, where  the natural numbers 

,,3,2,1   we can calculate (approximately or exactly) the advancement  .C  

Proof. We have 

     aaaCA 21  (104) 

Given that ,lim n
n 

  where ,n  eq. (104) converts (equivalently) to 

 n
nnn

aaanCnA 















21limlimlim  

and further 

      n
nn

aaanCnA 


21limlim  (105) 

Therefore, the two functions of n in the above relation, namely the 

function     nCnA   and the function  ,21 naa    have the same 

limit when n tends to infinity. This means that either i) the two functions 

take the same value for each value of n (equal) or ii) the two functions do not 
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take the same value for each value of n (unequal); however, as n tends to 

infinity, the values that these receive progressively approach each other. 

In the first case where the functions     nCnA   and 

 n 21  are equal, for n, if we use the values ,,3,2,1 n  we 

obtain the corresponding equations: 

    111  CA   (105_1) 

    2122  CA   (105_2) 

    32133  CA   (105_3) 

…… 

So, if the advancement C is a simple real number, then each of the above 

equations will calculate the value of that real number C. If, on the other 

hand, the advancement   CC  is an infinite number that includes more 

real numbers ,,, 21 CC  then a corresponding number of equations needs to 

be obtained from eqs. (105_1), (105_2), (105_3) ..., to calculate these real 

numbers. 

In the second case, where the functions are unequal, again, by setting 

,,3,2,1 n  we obtain equations (105_1), (105_2), (105_3)..., where these 

equations are now approximate, and each higher value of n gives a better 

approximation.  

Examples. Let us calculate the following series: 

   321A  

By integrating the last term, , we obtain relation (106), where 21 CC   

is the advancement of the infinite number 22  (one degree lower than 

22 ). 

   


 21

2

2
CCdA     where 21, CC  (106) 

Based on eqs. (105_1) and (105_2), we have 

2

1
11

2

1
2121

2

 CCCC  
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12212
2

2
2121

2

 CCCC  

Thus, 0
2

1
21  CC  

Therefore,   ,221  CCC  and eq. (106) becomes (107): 

 
22

2 



A  (107) 

Of course, this result is the same as the one we obtain if we take the limit 

 
,

2

1
lim





nn

n
 so the calculation   2C  is confirmed to be correct.  

If instead of equations (105_1) and (105_2), we use eqs. (105_3) and 

(105_4), we, again, obtain   ,2C  as we see below. The same, of course, 

applies if we use any other pair of the infinite number equations: (105_1), 

(105_2), (105_3) … 

5.133213
2

3
2121

2

 CCCC  

2443214
2

4
2121

2

 CCCC  

Therefore,   .
2

0
2

1
21


 CCC  

Finally, if instead of the first-degree advancement above, we consider a 

higher degree (a fact that cannot happen), for example, a second-degree 

advancement, i.e.,   ,32
2

1 CCCC   where ,,, 321 CCC  by using 

eqs. (105_1), (105_2), and (105_3), we come, again, to the same result (first-

degree advancement), as can be seen below: 

2

1
111

2

1
32132

2
1

2

 CCCCCC  

1242122
2

2
32132

2
1

2

 CCCCCC  

5.13932133
2

3
32132

2
1

2

 CCCCCC  
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Hence, .0
2

1
0 321  CCC  

Therefore,   2C  is calculated, again, exactly as before, and, of 

course, the advancement  C  is of a first-degree.  

Let us now consider the famous series of relation (108). This is the well-

known Basel problem posed by Pietro Mengoli in 1650, which was solved by 

Leonhard Euler in 1734, where this sum is equal to 2 6 1.644934   

  .
1

3

1

2

1

1

1
2222 

 A  (108) 

By integrating the last term 21   we obtain the relation below, where C 

is the advancement of the considered infinite number. 

   





 CdA
11

2
 

Certainly, here, the advancement C cannot be a polynomial function of  

since the sum of the series is not infinite but is finite. By sequentially 

applying eqs. (105_1), (105_2), (105_3) …, we obtain 

(105_1)  2
1

1

1

1
2

 CC   

(105_2) 75.1
4

7

2

1

1

1

2

1
22

 CC   

(105_3)  .6944.1
36

61

3

1

2

1

1

1

3

1
222

 CC   

Therefore, we observe that, as the value of n increases, the approximation 

of the real number C becomes better, i.e., closer to the correct value: 

.644934.1 C  

Let us now take 50n  and calculate the corresponding sum of the first 

50 terms of the series: 

.625133.1
50

1

3

1

2

1

1

1
2222

   
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This value of the sum of the first 50 terms of the series implies a 

calculation error equal to 1.2038%. 

Now, by using the corresponding formula (105_50), as shown in eq. (109), 

we obtain a value of ,645133.1 C  which implies a much smaller error, 

equal to 0.0121%, i.e., 99.67 times smaller. 

.645133.1625133.1
50

1
  CC  (109) 

In order to achieve the same accuracy result (as before), by directly 

calculating the sum of the terms, we need to obtain 5030 terms from the 

series (instead of the 50 terms before), which means much more laborious 

calculations. 

Consequently, the developed numerical calculation method (using the 

infinite numbers) is important in the cases where the sum of a series is not 

known in an analytical way and the calculation is necessarily carried out 

numerically. For example, for the series of relation (110), the sum of which is 

not analytically known, we have 

  .
1

3

1

2

1

1

1
3333 

 A  (110) 

   





 CdA
23 2

11
    where C  

For ,50n  the corresponding sum of the first 50 terms of the series is 

.2018609.1
50

1

3

1

2

1

1

1
3333

   

Now, using the corresponding formula (105_50), as seen in relation (111), 

we obtain the value .202061.1 C  

2 3 3 3 3

1 1 1 1 1

2 50 1 2 3 50
C      


 (111) 

This numerical method incredibly shortens calculations, increases the 

accuracy of the result, and saves time. 

Theorem 6. The ratio of two infinite number real functions that represent 

infinity is equal to the ratio of their derivatives so long as the ratio of the 

derivatives is finite, ,  or   (L’Hopital’s rule in infinite functions). 
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Proof. Let us consider the real functions  x1  and  ,2 x  where .x  

These functions are continuous, differentiable, and non-oscillating. Suppose, 

also, that   


x
x

1lim  and   .lim 2 


x
x

 Then, according to L’Hopital’s 

rule, relation (112) applies: 

 
 

 
 x

x

x

x

xx 2

1

2

1 limlim










 (112) 

so long as the limit is finite, ,  or .  

Relation (112) is transformed equivalently: 

 

 

 

 x

x

x

x

x

x

x

x

2

1

2

1

lim

lim

lim

lim
















  






























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Example. When making use of Theorem 6 above (L’Hopital rule in 

infinite functions), relation (74), which is repeated below, is proved much 

easier. 
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Indeed, according to Theorem 2, the derivative of the infinite function of 

the denominator is equal to its last term  ,1   whereas the derivative of the 

numerator is also  .1   Therefore, the left member of the above relation is 

transformed as follows: 
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VI. Abstract Structure and Properties of the Infinite Numbers Set 

In light of the above, it is important to investigate what kind of abstract 

structure the new set of infinite numbers has and what the similarities and 

differences are compared to other related mathematical concepts. As is 

known, an abstract structure includes precise rules of behavior that can be 

used to determine whether a candidate implementation actually matches the 

abstract structure in question, and this must be free from contradictions. 

Certainly, this also happens with infinite numbers, as precise rules of 

behavior have been established, and there is no contradiction. 

In mathematics, an algebraic structure consists of a non-empty set, S 

(called the underlying set, carrier set, or domain), a collection of operations on 

S of finite arity (typically binary operations) and a finite set of identities, 

known as axioms, that these operations must satisfy. Based on what was 

exposed in the previous Sections and the above-mentioned definitions, the set 

of infinite numbers, A, is indeed an algebraic structure. 

Moreover, in mathematics, a field is a set on which addition, subtraction, 

multiplication, and division are defined and behave as the corresponding 

operations on rational and real numbers do. The fields that are most familiar 

are the field of rational numbers, the field of real numbers, and the field of 

complex numbers. Many other fields, such as the fields of rational functions, 

algebraic function fields, algebraic number fields, and p-adic fields, are 

regularly used and studied in mathematics, especially in number theory. 

Based on what was stated in the previous Sections and the four arithmetic 

operations defined, it is obvious that the set of infinite numbers is a field. 

Furthermore, the set of infinite numbers is an algebraically closed field since 

every operation on infinite numbers yields another infinite number. 

In mathematics, an ordered field is a field together with a total ordering 

of its elements that is compatible with the field operations. The basic example 

of an ordered field is the field of real numbers. However, in the set of infinite 

numbers, A, ordering is not applied, as infinite numbers with different angles 

cannot be compared, as was already mentioned above. 

As is known, a Hardy field (H) is a field consisting of the germs of real-

valued functions at infinity that is closed under differentiation [24, 31, 32], 
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where a germ of an object (in general) in a topological space is an equivalence 

class of that object and others of the same kind that captures their shared 

local properties. Loosely speaking, Hardy fields are the natural domain of 

asymptotic analysis, where all rules hold without qualifying conditions. It is 

interesting to note that we can place an ordering on H by saying gf   if 

 fg   is eventually strictly positive, meaning that there is a real number, 

U, such that      0 xfxg  for all .Ux   However, in contrast to Hardy 

fields, in the set of infinite numbers, A, ordering is not applied, as infinite 

numbers with different angles cannot be compared [25, 26]. 

In addition to these, rings in mathematics are algebraic structures that 

generalize fields; multiplication does not need to be commutative, and 

multiplicative inverses do not need to exist. In other words, a ring is a set 

that is equipped with two binary operations that satisfy properties analogous 

to those of the addition and multiplication of integers. Ring elements can be 

numbers, such as integers or complex numbers, but they can also be non-

numerical objects, such as polynomials, square matrices, functions, and 

power series. Of course, the set of infinite numbers that constitutes a field is 

also a ring, which is a broader concept than a field. 

Whether a ring is commutative (that is, whether the order in which two 

elements are multiplied might change the result) has profound implications 

on its behavior. Commutative algebra, the theory of commutative rings, is a 

major branch of ring theory, highly influenced by problems and ideas of 

algebraic number theory and algebraic geometry. The infinite numbers form 

a commutative algebra over the real numbers since the commutative law for 

multiplication applies, as is explained in Section III. 

Additionally, it should be mentioned that in the set of infinite numbers, 

A, the “Archimedean property” is not satisfied for any pair of elements, as is 

true, for example, for numbers  and .2  The reason is that there is no 

integer, n, so that ,2n  given that 0
2







 nn
 for every natural number 

n, which means that the number  is infinitesimal with respect to the number 

.2  Therefore, the infinite numbers, A, constitute an algebraic structure that 

is “non-Archimedean”, as there are pairs of numbers that do not satisfy the 
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Archimedean property, while the sets of the integers, the rational numbers 

and the real numbers, together with the operation of addition and the usual 

ordering (), are Archimedean groups [27, 28, 33, 34]. 

In model theory, a “transfer principle” states that all statements of some 

language that are true for one structure are true for another structure. For 

hyperreal numbers, the transfer principle is concerned with the logical 

relation between the properties of the real numbers, , and the properties of 

a larger field, denoted ,  called the hyperreal numbers, which include, in 

particular, infinitesimal numbers. 

However, it is noted that the hyperreal numbers form an ordered field, 

whereas the set of infinite numbers is not an ordered field, as infinite 

numbers cannot be compared if they have different angles. On the other 

hand, as mentioned above, the real numbers form an Archimedean field. 

Thus, a similar transfer principle cannot be applied to infinite numbers, in 

contrast to hyperreal numbers [29]. 

In summary, infinite numbers, which are a superset of the complex 

numbers, form a rich structure that is simultaneously a field, a non-ordered 

ring, a “non-Archimedean” algebraic structure, an algebraically closed field, 

and a commutative algebra over the real numbers. 

Finally, it should be noted that although the real technological systems 

are finite, infinity may appear during their operation in various ways, and, 

therefore, respective analysis is required. For instance, a system can lead to 

instability, meaning that some physical quantity tends to infinity and, thus, 

during analysis/synthesis, it needs to be fully investigated and properly 

dimensioned. Moreover, a system with a very large number of elements (a 

distributed system) can be simulated as a system of an infinite number of 

elements (see applications in infinite electrical networks below). 

Therefore, the investigation of infinity is very useful (not only in theory 

but also in practice) and finds important applications in real technological 

systems. 
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VII. Indicative Mathematical and Technological System Applications 

Based on the Above Approach 

A. Applications for calculating limits of the form 0  or   with series 

of numbers, where L’Hopital’s rule cannot be applied. 

A1. Find the following limit (113): 

  







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
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  (113) 

1st Proof. By using infinite numbers, the ordinary series of eq. (114) 

below is written as formula (115), and, according to Theorem 2, its derivative 

is equal to its last term (eq. (116)), given that the respective criterion is also 

satisfied. 
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By taking the integrals in eq. (116), the following is obtained: 

     
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       CA 1ln
2

1 22  (117) 

where  C  is the advancement, which is one degree lower than the function 

 .A  

When combining (115) and (117), we obtain 
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Furthermore, according to Section III (eq. (17)), the following is obtained: 
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2nd Proof. Using infinite numbers, the last infinite term of an ordinary 

series depicts the first derivative, and, therefore, by applying Theorem 6 

(L’Hopital’s rule in infinite functions), we obtain the following: 

First, relation (113) is written in infinite numbers: 
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Now, by taking the first derivative of the numerator and denominator, we 

have 

2

1

22

1

2
2

1 2

3

2

2

3
























L  

It is really a very simple way to calculate the limit of expression (113). 

Additionally, it is a method that can be applied in all corresponding cases.  

In order to examine the correctness of the above result (and the proposed 

method), the limit of expression (113) is calculated again below, with an 
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additional proof based on conventional algebra, which is certainly more 

difficult: 

3rd Proof. 
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we have to prove that 
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If we take the limits of all the members of inequality, we conclude that 

our expression is equal to ,
2

1
 as it is also proved by using infinite numbers.  

In the same way, the limits of complicated expressions with a series of 

numbers, such as in eqs. (118)-(120), where ,n  are easily determined. On 

the contrary, proving them without the use of infinite numbers is not an easy 

task. 
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We notice that the above limits (relations (118)-(120)) are of the form 

  since both the numerator and the denominator tend to infinity. 

However, L’Ηopital’s rule cannot be used according to the classical method 

(without infinite numbers) since we have not functions but series involved, 

where, of course, there are no derivatives. 

Let us now calculate the limit of the ratio of the series: 

A2. Find the limit of the following expression, with ratio of infinite series: 
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     where n   (121) 

Proof 1. By using infinite numbers, the above expression is written as 

the following ratio,    , BA  of the corresponding infinite number 

functions: 
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According to Theorem 2, the derivative of the infinite number function of 

the numerator  A  is    ,131  ddA  which also takes into account 

the fact that the respective criterion applies. Therefore, the following integral 

is calculated: 
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Similarly, for the denominator  ,B  we obtain 
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Proof 2. By applying L’Hopital’s rule to the ratio of infinite functions, 

   , BA  we obtain 
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A3. Find the limit of the following expression: 
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where n  and .,,, dcba  

Proof. According to Theorem 2, the derivative of the infinite number 

function of the numerator  A  is    ,bddA   which also takes into 

account the fact that the respective criterion applies. Therefore, the following 

integral is calculated, where  1C  is the advancement: 
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  12111 CCC        where 1211 , CC  

Similarly, for the denominator  ,B  we obtain 
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2221

2

1211

2

 

For example, for ,2,2.4,1,5.1  dcb  we obtain 

 

 

2.5 4 5.5 7 1.5 1 1.5
lim lim 0.357

6.2 10.4 14.6 18.8 4.2 2 4.2
n

n nn

A n

B n 

     
  

     
 

In particular, for 0b  and ,0d  without using infinite numbers, we 

have 

 
  c

a

nc

na

ncccc

naaaa

B

A

nnn

n

n












 





321

321
lim

32

32
limlim  

where it is confirmed that the result of our method is true, that is, a/c.   

A4. Calculate the following unusual expression involving a series of 

numbers and improper integrals: 








 










  

nn

ex

dx
edx

x

n

t

ex

t

x tt

3

1

23

1

6

1

4

1

3

1

1

1
lim

lim
1

lim
22


  (123) 

where n  and .x  

Proof. This expression is transformed as: 

 








 














nn

exxex

n

exx

3

1

23

1

6

1

4

1

3

1

1

1
lim

lnln 22


 

Taking also into account eqs. (71) and (72), we notice that the above 

expression is of the form 



 which is certainly undefined, moreover, 
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normal L’Hopital’s rule cannot be applied, and consequently cannot be 

calculated. If, however, we use the infinite numbers, this expression is 

transformed as below where ,C  and is easily calculated. 

      

  C

eeee





2

22

3ln
3

1

2lnlnlnln
 

 

 

 

 

   
.

2

3

ln
3

2

ln

3ln
3

2
ln

3

2

ln

3ln
3

2

ln eeee 















  

It is an elegant result, achieved by a clear, smart, elegant and general 

method. 

B. Application of the extended (in the infinite numbers) bilateral Laplace 

transform to solve specific 2nd order differential equations, defined piecewise 

over the entire domain of real numbers  .,    

B1. Find the solution of the differential equation below: 

     tftyty  2  (124) 

where the following limits apply: 

  


ty
t
lim    and     1lim 


ty

t
 (125) 

and where 

  tetf 5    for  3, t  

  9tf      for  4,3 t  

  ttf sin     for  .,4 t   (126) 

Proof. By using the infinite numbers/functions, we can certainly obtain 

the bilateral Laplace transform of both sides of eq. (124). Given that, for the 

bilateral Laplace transform, the first derivative property is given by eq. (127), 

the second derivative property is calculated by using eq. (128). 

      




 stetyssYtyL  (127) 
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       L y t L y t    

     








  stst etyetsysYs2  (128) 

where  L  is the Laplace transformation symbol. 

Moreover, by using infinite numbers, the limit,   ,lim 


ty
t

 is 

equivalently written as   ,y  and the limit,   ,1lim 


ty
t

 is 

equivalently written as   .1y  

Based on eqs. (127) and (128), eq. (124) transforms 

            ssss eyeyesyesysYs2  

        ss eyeyssY 222  

 





t

t

stdtetf  

where, for ,0s  we have 

           2 2 2
t

s s st

t
s Y s sY s s y e y e f t e dt


  



         

and given that   y  and   ,1y  we have 

       




 
t

t

stss dtetfeesssYsYs 222  

  












 
3 4

3 4

5 sin9
t

t

t

t

t

t

stststt dtetdtedtee  

 






























t

t

st
t

t

stt

t

st
t

t

ts

s

te

s

tse
e

s
e

s

4

2

4

2

4

3

3
5

1

cos

1

sin9

5

1
 

Therefore, 
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     
4

3

3
52 9

5

1
2










 




t

t

st
t

t

ts e
s

e
s

sYss  

  .2
1

cos

1

sin

4

2
4

2



















 ss

t

t

stt

t

st
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s
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s

tse
 

Thus, 

 
   

 

 

4

3
2

3
5

2

9

52

1
















t

t
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t
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e
e

sss
sY  

         
.

212

cos
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sin

4

2
4

2 



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
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tse ss
t

t
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t
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Hence, 

 
   

     2
9

52 2

34355




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
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cos4cos
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sin4sin

sss
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
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






 

 
.

2







ss

e

s

e ss

 (129) 

Furthermore, 

 
     
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 





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Furthermore, 
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It is noted that the inverse bilateral Laplace transform of the expression 

12 



s

s
e s  for any 0  is    ,cos

12

1 










 tut
s

s
eL as  that is, 

the same as the one-side Laplace transform given that for ,t  and, 

consequently, for ,0t  the function     tutcos  is zero. 
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Therefore, taking the inverse Laplace transform of  ,sY  we have 

            tuetueetuety tt 5275

35

1

14

1

10

1
 

        3
35

1
3
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1
3
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1 522115   tuetueetue tt  

       4
4

9
44

2

9
4

4

9 2   tuetuttu t  

          3
4

9
33

2

9
3

4

9 2   tuetuttu t  

     44cos4sin
5

1
44sin

5

1 28   tuttuee t  

   44sin4sin
5

2
 tut  

       tuttuee t cossin
5

1
sin

5

1 22  

    tutsinsin
5

2
 

       44cos
5

4cos2
4

10

4cos
4

2

4cos 28   tuttueetu t  

   44sin
5

4cos
 tut  

       








  tuttueetu t cos
5

cos2

10

cos

2

cos 22  

   


 tutsin
5

cos
 

        .
2

1

2

1 22   tueetutu t  

Since    1tu  and   ,0tu  we obtain the solution: 

  tt eeeety 5275
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14

1
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1
   
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35

1
3

14

1
3
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1 522115   tuetueetue tt  
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       4
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9
44
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9
4

4

9 2   tuetuttu t  
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9
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9
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4

9 2   tuetuttu t  

     44cos4sin
5
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1 28   tuttuee t  
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5
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5

4cos2
4
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4cos
4

2

4cos 428   tutetueetu st  

   44sin
5

4cos
 tut  

.
2

1

2

1 22 tee   (130) 

The above relation can be written equivalently: 

For 3t   : 

  ttt eeeeeety 225275
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1
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1    (131) 

For :43  t  
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10 14 35 10 14 35
t t t ty t e e e e e e e e               

  tt eeet 222

2

1

2

1

4

9
3

2

9

4

9    (132) 

For :4t  

  tttt eeeeeeeety 5221155275

35

1

14

1

10

1

35

1

14

1

10

1
   

    tt etet 22

4

9
3

2

9

4

9

4

9
4

2

9

4

9    

   4sin4sin
5

2
4cos4sin

5

1
4sin

5

1 28   ttee t  
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   4sin
5

4cos
4cos

5

4cos2

10

4cos

2

4cos 28   ttee t  

.
2

1

2

1 22 tee   (133) 

Let us now proceed to verify the above solution, which is fully described 

by eq. (130). First, we will examine whether eq. (130) and, consequently, eq. 

(131) satisfy the specific initial conditions, i.e., if   y  and   1y  

holds. For ,t  equation (131) is transformed into eq. (134): 

       .
2

1

2

1

35

1

14

1

10

1 225275   eeeeeey  

Therefore, 

    0555

2

1

2

1

35

1

14

1

10

1
eeeey  (134) 

Thus,   y  

From equation (131), for the 3t  results: 

      ttt eeeeety 22527

2

1
2

35

1
5

14

1
2    

             22527

2

1
2

35

5

14

1
2 eeeeey  

.1
7

1

7

1 055   eee  

Thus,   1y  

Therefore, both the specific initial conditions are satisfied. 

Let us now see if the differential equation (124) is also verified by the 

solution in question. To this end, let us form the derivatives  ty  and  .ty    

For :3t  

  ttt eeeeety 22527

7

1

7

1    

  .2
7

5

7

2 22527 ttt eeeeety    
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So, it holds that 

    tetyty 52   

For :43  t  

  tttt eeeeeety 5221527

35

5

14

2

7

1

7

1
   

tt eee 222

2

2

2

9

2

9    

  .2
1

9

35

25

7

2

7

5

7

2 2225221527 tttttt eeeeeeeeety    

So, it holds that 

    992 55  tt eetyty  

For :4t   

  7 2 5 21 2 5 2 21 1 2 5 9 9 9 9

7 7 14 35 2 2 2 2
t t t t t ty t e e e e e e e e                 

   4cos4sin
5

2
4sin4sin

5

1
4sin

5

2 28   ttee t  

    tt eettee 2228

2

2
4cos

5

4cos
4sin

5

4cos2

5

4cos    

  tttttt eeeeeeeety 225221527

1

9

1

9

35

25

7

2

7

5

7

2    

   4sin4sin
5

2
4cos4sin

5

1
4sin

5

4 28   ttee t  

   4sin
5

4cos
4cos

5

4cos2

5

4cos
2 28   tstee t  

.
1

2 22 tee   

So, it holds that 

       4sin4cos4cos4sin2  tttyty  

      .sin44sin tt   
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Consequently, it is confirmed that eq. (130) (which is written in infinite 

numbers), is, indeed, the solution to the problem, in the broader set of infinite 

number functions. Certainly, the infinite number terms, as seen in eq. (130) 

are zero and can be omitted. Consequently, our solution is finally described 

by the following function (135), which is a real function. 

       3
14

1
3

10

1

35

1 221155   tueetueety tt
 

          4
4

9
44

2

9
4

4

9
3

35

1 25   tuetuttutue tt  

          3
4

9
33

2

9
3

4

9 2   tuetuttu t  

     44cos4sin
5

1
44sin

5

1 28   tuttuee t  

       4
10

4cos
4

2

4cos
44sin4sin

5

2 28   tueetutut t  

       44sin
5

4cos
44cos

5

4cos2 4   tuttute s  

.
2

1
   (135) 

C. Applications in analyzing complicated infinite electrical networks 

In [38], the infinite electrical network of Figure 1 was considered, and 

current I was calculated in the simplified case where all impedances, Z, are 

equal to a net resistance .1 RZ  

 

Figure 1. Infinite electrical network. 
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C1. In the present study (for the electric circuit of Figure 1, where n tends 

to infinity), in place of the resistors  ,1R  we consider the general case of 

impedances (e.g.,  6.08.0 iZ ). So, in this network, each subsequent 

branch includes an additional impedance, Z. This means that the nth branch 

contains n impedances Z in a series, and all the branches are connected in 

parallel with each other as well as with an electrical voltage source. Solve the 

circuit, calculate the current (I), find the current lag with respect to voltage 

(U), and, finally, determine the ratio of the total (circuit equivalent) reactance 

to the total resistance. 

Proof. According to Kirchhoff’s two laws, the following equation applies: 

   
1 1 1 1

0.8 0.6 2 0.8 0.6 0.8 0.6totalZ i i n i
    

    
 
















1

2

1
1

6.08.0

1


i
 

where totalZ  is the total (circuit equivalent) impedance. 

Therefore, 


















1

2

1
1

6.08.0

1

ln

101


iZ
U

Z

U
I

totaltotal
 

.

1

2

1
1

ln

10

6.08.0

1












i
I  (136) 

So, based on relation (79), it follows that 

  Aii
i

I 686.08.010
6.08.0

10



  or 

AI  87.3610  

Thus, the current (I) is 10 A, and its lag with respect to voltage (U) is 

.87.36   

Also: 
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



















ln

6.08.0

1

2

1
1

6.08.0 ii
iXRZ totaltotaltotal


 

    ln6.0ln8.0 i  

where totalX  and totalR  are the circuit’s total reactance and total resistance, 

respectively. 

Therefore, .75.0
8.0

6.0

ln8.0

ln6.0







total

total

R

X
 (137) 

C2. In the electric circuit of Figure 2, let us consider the more complex 

case, where the values of the cascaded parallel resistors ,,,, dcba rrrr  are 

not equal to each other, as is the case in [30] and [38] but have the following 

values, respectively:    ,3,23,6,4,3,1  nn  Solve the circuit. 

 

Figure 2. Infinite ladder electrical network. 

Proof. The considered infinite resistive ladder network (Figure 2), which 

is also described in [30] but for ,1 rrrrr dcba   is a typical 

case of an infinite network with local connectedness (locally finite connected) 

and finite power dissipation, and according to the “existence and uniqueness 

theorem”, it must have only one (specific) solution in terms of voltages and 

currents, and, of course, Kirchhoff’s two laws must apply [14, 15, 21]. 

In terms of infinite numbers, the last two infinite parallel branches have 

resistors equal to   23  and .3   The total resistance, ,totalr  of the 

infinite number of parallel pure resistive branches, when also taking into 

account eqs. (71) and (72), is given by the following formulas: 
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  C
rtotal







 23ln
3

1

3

1

23

1

6

1

4

1

3

1

1

11
  (138) 

C

rtotal




23ln

3

1

1
    where C  (139) 

0 totalr  

Therefore, there is a short circuit between nodes  and b  .0v  

Certainly, the resistance ,totalr  can be calculated without the use of infinite 

numbers, and the result, again, is ,0totalr  given that the respective series 

diverges. 

Hence, current I (through the voltage source) should be equal to 1 A, 

whereas the current through each of the purely resistive branches  0jr  is 

  .00  jj rrv  At the same time, an infinite series of zeros sums to zero. 

Thus, we conclude that 1 A flows toward node , whereas 0 A flows away 

from it (a violation of Kirchhoff’s current law). So, by using standard calculus, 

we must conclude that in this network as well, Kirchhoff’s current law fails at 

node a and at node b as well, as also happens in [30]. Therefore, we reach the 

same unexpected conclusion as A. H. Zemanian first pointed out for these 

particular infinite electrical networks [30]. 

On the other hand, when using the proposed infinite numbers, the 

following is true: 

Given that   111  totalrVI  A and totaltotal rrIv   and, 

therefore (when also taking into account eq. (139)), the current of the jth 

parallel branch is 

jj
j r

C
r

v
I

1

3ln
3

1

1

2









 

  

where .,3,23,,6,4,3,1   nnrj  

Thus, the sum of the currents of all parallel branches sumI  is given by the 

following formula: 
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 


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
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





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

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


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









CnCC
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3

3ln
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1

3

3ln
3

1

3

3ln
1

1
222

  























Cn
3

3ln
3

1
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

















3

1

23

1

6

1

4

1

3

1

1

1

3ln
3

1

1

2


C

 

which is equal to 1A, according to eq. (138).  

Consequently, also in this case, by using infinite numbers, the circuit is 

easily solved, and the incoming current I at node  is equal to the outgoing 

current sumI  (1A), so there is no violation of Kirchhoff’s current law, as 

would happen if standard calculus was used. 

This method is much simpler, shorter and cleaner than the one proposed 

by A. H. Zemanian and the result is exactly the same. 

C3. What is the power consumption across the resistance  1r  of the 

branch (BC) of the electrical network of Figure 3 when n tends to infinity and 

given that all resistances are also equal to 1? 

Proof. According to A. H. Zemanian, H. Flanders, C. Thomassen, etc. [14, 

22], infinite electrical networks can be much more complex than those of the 

previous examples. They may extend infinitely in both two or three 

dimensions of space. They may also not have only an infinite number of 

resistances but also an infinite number of sources, etc. Such a complex 

network, with double infinity sources (along the horizontal and vertical axis) 

and double infinity resistances (along the horizontal and vertical axis), is 

illustrated in Figure 3, where n tends to infinity. 



NEW INFINITE NUMBERS TO QUANTIFY INFINITY … 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 7, May 2024 

621 

 

Figure 3. Infinite electrical network. 

Considering that n tends to infinity  ,  the resistance  R  of the 

horizontal branch (AB) as well as the total resistance  totR   of the loop are 

      1
23

1

7

1

4

1

1

1



 RRR tot  

Moreover, the total loop voltage, as the current (I) points (clockwise), is 

 totV  
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
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
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Therefore, current I is 
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 (140) 
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In relation (140), we apply Theorem 6 (L’Hopital) for each of the two 

fractions of this relation, and we also use Theorem 2, taking into account the 

fact that the relevant criterion is valid for both ordinary series. So, we obtain 

 
 1333

3

1

1

3

1
0

23

1
0

23

1

23

21

2223
































 ee

e

e

e

I  

Therefore, the power consumption (P) across the resistance  1r  of the 

branch (BC) is  

  .19
22  erIP   

Solving this problem without using the infinite numbers and functions is 

certainly a very difficult task. 

D. Application in kinematics 

D1. In an orthonormal xOy  axis system (Figure 4), two material points, B 

and C, move on the positive half-axes Ox  and ,Oy  respectively. At time ,0t  

both material points are at the beginning (O) of the axes. At time ,3t  the 

material point B on the Ox half-axis is at a distance equal to ln3 from the 

beginning of the axis (position 3B ); at time ,5t  it is at a distance equal to 

ln5 from the beginning of the axis (position 5B ), and at time  ,12  nt  it is 

at a distance equal to  12ln n  from the beginning of the axis (position 

12 nB ). On the other hand, at time ,3t  the material point C on the Oy  

half-axis has traveled a distance of ,313 OC  at time ,5t  it has traveled 

an additional distance of ,5153 CC  and at time  ,12  nt  it has traveled 

an additional distance of  .1211232  nCC nn  At each time instant, t, a 

right-angled triangle 3 3 5 5 2 1 2 1, , , n nOB C OB C OB C   is formed, the angle of 

which, ,1212  nn COB  is called 12  n  (see Figure 4). What is the value of the 

angle 12  n  when t tends to infinity? What is the ratio CB   where B  and 

C  are the decelerations of the material points B and C, respectively, when t 

tends to infinity? What is the ratio of the vertical side  12 nOB  to the 

hypotenuse  1212  nn CB  of the right-angled triangle 1212  nn COB  when t 

tends to infinity? 
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Figure 4. Ortho-normal xOy  axis system. 

Proof. In the right-angled triangle 33COB  of Figure 4, it holds that  

      ,30341.03ln31tan 333  OBOC  and thus, .87.163   

Similarly, it can be found that  33.185  and .16.197   

If we consider the following ordinary series,  ,A  written as an infinite 

number function, its derivative is equal to  ,121   and, hence, this series is 

recalculated from the integral of eq. (141). 

Therefore, relation (142) applies. 

 
12

1

7

1
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1
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1

1

1


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       





 CdA
d

d
A 12ln

2

1

12

1
  (141) 

where .C  

Thus, 

  C


 12ln
2

1

12

1

7

1

5

1

3

1

1

1
  (142) 

which is infinity. 

At time ,12  nt  the total distance BS  that is traveled by material 
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point B of Figure 4 is equal to  ,12ln n  and when n tends to infinity  ,  the 

total distance  BS  is expressed by eq. (143). 

   12ln BS   (143) 

On the other hand, at time ,12  nt  the total distance, ,CS  that is 

traveled by material point C, is given by formula (144), and when n tends to 

infinity  ,  the total distance,  ,CS  is expressed by eq. (145). 

12

1

7

1

5

1

3

1


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n
SC   (144) 

 
12

1

7

1

5

1

3

1


 CS  (145) 

Therefore, relation (142) can be written as (146) by also taking into 

account eqs. (143)-(145). 

      CSCS BC 
2

1
12ln

2

1
1      or 

    CSS BC 
2

1
1  (146) 

 
 

.
2

1







B

C

S

S
 (147) 

When ,n  the two vertical sides,  12 nOB  and  ,12 nOC  of the 

infinite right-angled triangle ,1212  nn COB  are the above distances,  BS  

and  ,CS  respectively. Therefore, the ratio of eq. (147) is the tangent of 

angle 12  n  when t tends to infinity  ,  and thus, ,5.0tan   meaning 

that .15.26   In conclusion, as shown above, ,33.18,87.16 53   

and ,16.197   and when ,n  the angle  receives its highest value: 

.15.26   

According to the general definition of linear velocity from kinematics, the 

velocity, ,Bv  of the moving material point B at time 12  nt  is calculated 

using eq. (148), and therefore, when n tends to infinity  ,  velocity, ,Bv  is 

given by (149), which, of course, is zero. However, with infinitely small 
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infinite numbers, one can work further, and the derivative of Bv  gives the 

acceleration /deceleration  B  of material point B (150). 
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Similarly, the velocity, ,Cv  of the other material point, C, at time 

12  nt  when n tends to infinity is also calculated, and it is given by eq. 

(151). Moreover, the deceleration  C  of material point B is calculated (152). 

By combining (150) and (152), we find that eq. (153) gives the ratio ,CB   

which is equal to the number 2. Therefore, the deceleration of material point 

B is twice as high as the deceleration of material point C, although both of 

them tend to zero (they are zero infinite numbers). 
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Based on the above, relation (147) can be written as (154). Moreover, by 

applying the Pythagorean theorem to the right-angled triangle ,1212  COB  
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the relation (155) holds. Finally, when using (154), (155) is transformed into 

(156), and thus, the ratio of the vertical side  12 OB  to the hypotenuse 

 1212  CB  is calculated. 
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This complex kinematics problem shows the usefulness of infinite 

numbers in another very different field as well.  

VIII. Conclusions 

In this study, the new infinite numbers and functions were introduced, 

strictly formulated and proved. In particular, the fundamental definitions, 

lemmas, theorems, properties, and illustrative mathematical and engineering 

applications were presented and proved. By applying the well-founded theory 

of the limits of functions, infinite numbers and functions were defined and 

developed, which retain the important properties of real-complex numbers 

(arithmetic operations, powers, roots etc.). This is a very important 

characteristic of the proposed new numbers. These new infinite numbers can 

quantify infinity and they allow arithmetic operations and calculus in 

mathematical expressions where infinity occurs. The set of infinite numbers 

is a superset of the complex numbers set. They offer the possibility to extend 

the Laplace transform F(s) (which is widely used in the sciences) in cases 

where F(s) does not converge in the field of complex numbers. The extended 

(in the infinite numbers) bilateral Laplace transform, also proposed here, 

made it possible to solve specific differential equations defined piecewise over 

the entire domain of real numbers  .,   Their solutions (verified to be 
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true), in general belong to the set of infinite number functions. However, they 

also include the solutions belonging to the well-known real-complex functions 

set. Solving these problems is not possible using the normal Laplace 

transform, since it is only defined for positive real values. By using the 

infinite numbers, interestingly, long series of infinite terms were beautifully 

transformed into simple, elegant infinite functions whose computation is an 

easy task. In this way a simple, efficient criterion for series convergence was 

also developed. Moreover, lemmas and theorems about the infinite functions 

and their derivatives/integrals were proved, and complicated, unusual limits 

of series of numbers, as well as ratios of the form ∞/∞ (involving series and 

improper integrals), were calculated in cases where L’Hopital’s rule cannot be 

applied. In this way, solving problems that are complex or difficult becomes 

possible in an easy way. Additional theorems on these infinite numbers and 

functions were proved, and a simple-to-apply numerical method was 

developed for the easier and more accurate calculation of a series of numbers 

where the sum is not known analytically. Furthermore, it was shown that 

these new infinite numbers constitute an algebraic structure that is non-

Archimedean, and, moreover, in contrast to Hardy fields the set of infinite 

numbers is not an ordered field. In general, these infinite numbers and 

functions with their properties (similar to those of real-complex numbers and 

functions) are a useful tool for solving problems where infinity occurs. As 

demonstrated in the indicative examples, the presented infinite numbers, 

functions, and their properties have important applications in terms of 

analyzing and solving technological and engineering systems i.e., complex 

infinite electrical networks and specific kinematic problems in which infinity 

appears. Finally, it must be noted that when the approach proposed here was 

applied to model and solve the above infinite electrical network examples 

(first published and solved by A. H. Zemanian) [30], it gave the same final 

results much more easily. In conclusion, as has been shown, infinite numbers 

easily solve problems that are quite difficult or impossible to solve by 

conventional methods (e.g. problems described by eqs. (100), (102), (110), 

(113), (118), (119), (120), (123), ((124)-(126)), also infinite electrical networks 

of Figures 1-3 as well as the problem of Figure 4). 
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