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Abstract 

A multitude of applications spanning various fields can be distilled down to the resolution 

of generalized equations that incorporate Banach space-valued operators. The predominant 

approach to solving these equations involves iterative methods, where a sequence is 

systematically generated to approximate a solution, contingent upon specific conditions being 

met for the initial point and the operators employed in the process. Specialized Secant-type 

methods have been devised, with their adaptations converging to familiar techniques like 

Newton’s method, modified Newton’s method, Secant method, Kurchatov method, and 

Steffensen’s method, among others. In this paper, we are concerned with the problem of 

approximating a solution of the generalized equation       ,01  xGxfxf  where 21 , BB  are 

Banach spaces, 21: BBf   is a differentiable operator in the sense of Fréchet, 211 : BBf   

is a continuous operator whose differentiability is not assumed and 21: BBG   is a set valued 

operator. We demonstrate that the above problem can be resolved using Newton-Secant-type 

method. The theory is complemented by numerical applications. 

 



I. K. ARGYROS, J. A. JOHN and J. JAYARAMAN 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 7, May 2024 

642 

1. Introduction 

We are concerned with the problem of approximating a solution of the 

generalized equation 

      ,01  xGxfxf   (1.1) 

where 21, BB  are Banach spaces, 21: BBf   is a differentiable operator in 

the sense of Fréchet, 211 : BBf   is a continuous operator whose 

differentiability is not assumed and 21: BBG   is a set valued operator. 

The usual case is when 01 f [29]. 

Newton-Secant-type method for generating a sequence approximating a 

solution 1Bx   of the equation (1.1) is 

          ,0,,, 1111101   nnnnnnn xGxxxxAxfxfBxx  

,2,1,0n  (1.2) 

where  1111 ,: BBBBA L  is usually a conscious approximation to .f   

If  0G  and    ,, xfyxA   the method (1.2) reduces to the iteration 

introduced by Zincenko [43] for solving the equation 

    .01  xfxf  (1.3) 

The operator 21: BBG   is assumed to be closed, non-empty, convex 

cone in the Banach space 2B  which is denoted by C for simplicity. The semi-

local convergence analysis of the method (1.2) is developed using generalized 

continuity conditions and majorizing sequences. The idea is taken from [29], 

where we used such conditions to solve the equation (1.3). We also show that 

even specializations of our results provide finer error analysis than existing 

ones [29]. 

2. Mathematical Background 

The definition of a convex process was inaugurated by Rockafellar [37] 

and studied by Robinson [32], Dontchev [18] and others [1-43]. In order to 

make the study as self contained as possible, we present the definition of a 
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convex process. More properties can be found in [35] and the references 

within. 

Definition 2.1. An operator P from a linear space 11 BB   into the linear 

space 2B  is a convex process if 

     yxyxPyyPxxP ~~,~,~,    for each ,~,~,, 1Byxyx   

    xxaPxxaP ~,~,    for each 0a  and 1
~, Bxx   

and   .00,0 P  

Then, the domain denoted by dom, the range by rge and the inverse by 

1P  are defined as: domP  is the set of elements from 1B  with   ,0xP  rge 

of P is     PdomxxPU ;  and     .;1 xPyxyP   

The sets domP  and rgeP  are convex set and the inverse is a convex 

process. 

If the norm of PP ,  is finite, the convex process is normed. 

The following Banach-type perturbation Lemma is needed [27]. 

Lemma 2.2. Let 1, PP  be convex processes from 1B  into .2B  Set 

  1DPdom   and   .2DPrge   Suppose 1, PP  and 1P  are normed, and 

that     11111
1 ,,;1 PPPPPdomCPP   is closed and 

   xPP 1  is closed for each .1Dx   Then,   1
1


 PP  satisfies 

   ,1DPrgePrge   

  1
1 2


 DPP   is a normed convex process; 

and    .
1

1

1

1
1

1

2 P
PPP D 


  

We assume familiarity with majorizing sequences and their importance to 

the study of the convergence of iterative methods [4-7]. 
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3. Algorithm 

Let .1B For each fixed ,, yx  define 

    .,,, 1BzCzyxAzyxP   

Clearly, P is a normed convex process from 1B  into ,2B  with inverse 

         ,,,, 1
1 CzzyxABxzyxP   

which is also a convex process. 

For a starting element  01
11

01 ,,, xxPPxx 


   such that 

     ,010
1  xfxfP  consider 1x  as the sum of 0x  and a projection of 

the origin in 1B  on     .010
1 xfxfP   This process is repeated with 1x  

replacing .0x At the n-th step, we get nx  and define 1nx  as the sum of nx  

and a projection of the origin in 1B  on     .1
1

nn xfxfP   Equivalently, 

the algorithm is, if nn xx ,1  are computed, the iterate 1nx  is any solution of 

the minimization problem:  

         .,:minimize 11 CxxxxAxfxfxx nnnnnn     (3.1) 

Thus, we arrived at: 

Algorithm: Newton-Secant-type-Cone  .,,,,, 011 xxCff   

Step 1. If      ,010
1  xfxfP  terminate with failure. 

Step 2. If  1  do: 

 Pick a solution of the problem 

         .,:minimize 0010100 CxxxxAxfxfxx    

 .; 001 xxxxe   

Step 3. Return x. 

This algorithm reduces to the one in [29] if .fA   If ,0G  the 

algorithm reduces to the one considered by us. Moreover, if  ,0C  then it 

reduces to the Zincenko iteration [43]. 
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Remark 3.1. The continuity of  nxA  and since C is closed and convex, 

imply that the feasible set of (3.1) is a closed convex set for each .,2,1 n  

Then, the existence of a feasible element x  implies that any solution of (3.1) 

is in the intersection of the feasible set of (3.1) with the closed ball of center 

nx  and radius .nxx   But, 1B  is reflexive and the function nxx   is 

weakly lower semi-continuous, a solution exists (see [29]). Thus, if (3.1) is 

feasible, then it is solvable and by convexity, this implies that any local 

solution is global. This important remark is used in Section 4. 

4. Convergence 

The following conditions are needed in the semi-local convergence of the 

method (1.2). 

Assume: 

 1H  There exist elements  01, xx  so that  01, xxPP   maps 1B  

onto .2B  

 2H  Let .00 s  There exists a continuous and non-decreasing function 

      ,,0,0:0v  so that for each ,x  

      .,,, 01001
1 xyxxvxxAyxAP  
  

 3H  The equation   01,00  ttsv  has a smallest positive solution 

denoted by , satisfying .0s  

 4H  There exists a continuous and non-decreasing function 

      ,,0,0: 0sv  so that for each  00 ,,, sxUzyx   

              .,,11
1 xzxyvxyzxAyfxfyfxfP   

 5H  0101 ssxx   where 1x  exists by the Remark 3.1 and is 

obtained by the Algorithm. Define the scalar sequence   01 ,0 sssn   

,, 0110 ssxx   where 1s  is given by 

 
 

,2,1,0,
,1

,

010

121
1 









 n

sssv

ssssv
ss

nn

nnnn
nn  (4.1) 
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The sequence  ns  is shown to be majorizing in Theorem 4.1 for the 

method (1.2). However, first a convergence condition is needed for it. 

 6H  There exists  010 , ss   so that for each ,2,1,0n  

  1,010  nn sssv   and  ns  

and the existence of the nn slim  denoted by .s  This limit is the unique 

least upper bound of the sequence  ns  and 

 7H    ., 00 DssxU   

Next, the main semi-local convergence result is developed under the 

conditions  1H -  7H  and the preceding notation. 

Theorem 4.1. Assume that the conditions  1H -  7H  are valid. Then, the 

sequence  nx  generated by the Algorithm (3.1) is well defined in 

 ,, 00 ssxU   remains in  00 , ssxU   for each ,2,1,0n  and is 

convergent to some  00 , ssxUx    solving the equation (1.1). 

Moreover, the following error estimates are valid. 

.,2,1,0,   nssxx nn   (4.2) 

Proof. Mathematical induction is employed to show the assertion 

.,2,1,0,11   nssxx nnnn   (4.3) 

The definition of the iterate 01, ss  in  5H  and (4.1) imply the existence 

of 1x  and that the assertion (4.3) is valid if .0n  

Assume mm sssxx ,,,,,, 011    exists and 

11   mmmm ssxx   for each nm ,,2,1,0    (4.4) 

It follows that 

0110 xxxxxx mmm      

.0011 ssssss mmm     

Thus, the iterates  ., 00 ssxUxm    By      321 ,, HHH  and  ,7H  it 
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follows that 

      0110011
1 ,,, xxxxvxxAxxAP mmmm  
  

    ,1,, 00010   sssvsssv mm   (4.5) 

by the definition of s  in  .6H  Moreover, we have 

       CxxxAxxxP mmmm   ,, 11  

                               CxxxAxxAxxA mm   01101 ,,,  

    ,, 01 mQxxP    

    .,, 101 mmm xxAxxAQ    

By Lemma 2.2 and (4.5),  mxP  maps 1B  into  mxPB 1
2,   is normed 

and  

 
    011

11
1

,,1

1
,

xxAxxAP
PxxP

mm

mm







  

 
.

,1

1

100 mm sssv 
  (4.6) 

Moreover, (3.1) is solvable for ,nm   since  mxP  maps 1B  into ,2B  

which establishes the existence of 1mx  solving (3.1). Then, consider the 

problem to find x solving 

           11111 ,   mmmmmmm xfxfxxxxAxfxf  

                            ., 112 CxxxxA mmmm    (4.7) 

Notice that the right hand side of (4.7) is in the cone C, so mx  solves (3.1). 

Thus, any x satisfying (4.7) is also feasible for (3.1). We can write (4.7) as 

          11111
1 , 
  mmmmmmm xfxfxfxfxxPxx  

   ., 112   mmmm xxxxA  (4.8) 

But the right hand side of (4.8) has an element of least norm. Hence, 

there exists x  satisfying (4.8), (4.7) and 
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          1111
1 ,, 
  mmmmmmmmm xxxxAxfxfxxPxx  

    111  mm xfxf  

   
 

 mm

mm

sssv

xxxxv

,1

,

100

011








  

   
 
 mm

mm

sssv

sssv

,1

,

100

10








  

,1 mm ss    (4.9) 

where we also used  ,4H  (4.3) (for mn  ) and (4.6). Then, by (4.9), it follows 

mmmmm ssxxxx   11  

                  and  0101 xxxxxx mmmm    

                  01 ssss mmm    

                  .001 ssssm    

Thus, the induction for (4.3) is completed and the iterate 

 ., 001 ssxUxm     (4.10) 

So, the sequence  nx  is complete in a Banach space 1B  and as such it is 

convergent to some  00 , ssxUx    (since  00 , ssxU   is a closed set). 

We can write  

             mmmmm xfxfxfxfxfxfE   11111  

      ., 1111   mmmmm xfxxxxA  

Then, we get 

   .1   xfxfCEm  

By the continuity of functions f and 1f  

0mE   as  .m  

But,      xfxfC 1  is closed. Thus, we conclude     ,Cxgxf    

which implies that x  solves the equation (1.1). 
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5. Specializations and Applications 

Application 5.1. Let us compare our results to the ones in [29]. That is 

we take    .,1 xfxxA nn   The conditions in [29] are non-affine invariant 

form 

        ., 10
1

1 yxLyfxfbxPT   

      .2112 yxLyfxfT   

and the majorizing sequence  nt  is defined by 

,0,0 10  tt  (5.1) 

   .
21 121
1

1
1  











 nnnn

n
nn ttLtt

L

tbL

b
tt  (5.2) 

 
 

.
2

1
,

1
min

1

2
2

1
1013 












 


bL

bL

bL
txxT  

    ,,04 DtxUT   where    .411
1

11
2

21
1

tbLbLbL
bL

t   

In our case, specialize the functions 

    tltvtsv 200 ,   

and      .
2

, 2
21 tlt

l
tvtsv   

then, the iteration  ns  becomes 

   .
2

1
121

1

2
1  








 nnnn

n
nn sslss

l

sl
ss  (5.3) 

Notice that 

   11 bLl    (5.4) 

and .22 bLl   (5.5) 

Our results are given in affine invariant form. The advantages of affine 

over non-affine invariant form are well known [29]. It follows by (5.1)-(5.5) 

and a simple inductive argument that 
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nn ts 0  (5.6) 

           nnnn ttss   110  (5.7) 

                          and   .0   ts   (5.8) 

Notice also that our sufficient semi-local convergence conditions  5H  and 

 6H  are weaker than  .3T  That is the conditions  1T -  4T  imply the 

conditions  1H -  7H  but not necessarily vice versa. 
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