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Abstract

It is an important challenge to understand how the geographical dispersion of a population
modifies the evolution of epidemics. In this paper, we consider a multipatch SIS model, and
analyse the stability of the endemic equilibrium. We consider the classical deterministic model
as the law of large numbers limit, as the size of the population tends to infinity, of stochastic
models. Moreover, we investigate the effect of the spatial structure on the time taken by the
fluctuations of the stochastic model to drive the system from the endemic to the disease free
equilibrium. Our conclusion is that, if the parameters of the epidemic are homogeneous over the
various patches, the effect of the fluctuations should be comparable to that of a similar
homogeneous model. On the contrary, if the parameters of the epidemic model differ from one
patch to another, then the situation is quite different, and in the cases which we investigated,
the time taken by the fluctuations to drive the system to the disease free equilibrium is
significantly larger than in the homogeneous model.

1. Introduction

In this paper, we study the fluctuations of a stochastic SIS multi-patch
model around its law of large numbers limit. Our motivation for this work is

the following. Provided that the basic reproduction number R, is larger than

1, there will typically exist an endemic equilibrium in the deterministic SIS
model, which i1s asymptotically stable. In other words, the deterministic
model predicts that the epidemic will last for ever. On the other hand, it is
not hard to show that the stochastic model will reach the disease free
equilibrium in finite time a.s. That is, the stochastic model predicts that the
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epidemic will stop soon or later. The larger the size N of the population is, the
closer the stochastic model is to the deterministic model. Therefore it is
intuitive that the larger the population size N is the more one has to wait
until the epidemic goes extinct in the stochastic model. As we will see, this is
exactly what the mathematics tell us.

Indeed, the central limit theorem tells us that one observes fluctuations of

order N°Y% in time of order 1. On the other hand, in the endemic
equilibrium the set of infectious individuals constitute a rather small
“1/2 s of the

order of the proportion of infectious individuals in the endemic equilibrium,

proportion of the total population. If N is not too large so that N

then there is a chance that the epidemic stops quickly. We shall make this
more precise below. On the other hand, the theory of “small random
perturbation of dynamical systems” due to Wentzell and Freidlin [13], and
based upon large deviations theory, predicts that fluctuations of order 1

appears if we wait a time of the order of exp(NV), where V will be defined

below. In between those two extremes, the theory of moderate deviations

allows to predict the time one has to wait if one wants to see a deviation of

order N™%, for any 0 < a < 1/2. Those results have been presented in the

case of the homogeneous model (for the case of the SIS, the SIRS and the SIR
model with demography) in Pardoux [19]. For the details of the arguments
exploiting the Central Limit Theorem and Large Deviations, see chapter 4 of

[5], and for the arguments exploiting moderate deviations, see [20].

The present paper considers the SIS multi-patch model. Our goal is
twofold. First we want to show that the above quoted results which hold for
homogeneous models, are also valid for the multi-patch SIS model. For a
more precise description of how the three approaches apply to the extinction
time of the epidemic, depending upon the size N of the population, see the

comment after Theorem 6.3 below.

Second, we show that under certain conditions, the asymptotic variance of
the limit in the CLT is the same as that in the homogeneous model, the latter
being known explicitly. And concerning the results exploiting Large and
Moderate Deviations, we show how to compute numerically the rate V' which

appears in the exponent. We also show in one particular example with 2
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patches how V varies with the parameters of the model. This suggests that if

some parameters of the model can be modified, it could be useful to choose

those parameters in order to minimize the rate V.

In the literature, there are some results which discuss the advantage of
certain values of certain parameters, based upon an analysis of the
deterministic model. In particular, considering a two patches deterministic
SIR model, Bailey [4] showed that if the transmission rate of one patch is
slightly bigger than 1 and that of the other patch is less than 1, then travel
can eventually cause the disease extinction in both patches. He also shows
that if the transmission rate of one patch is significantly greater than 1 and
that of the other patch is less than 1, then travel can cause the disease to
remain endemic in both patches. Studying a SIS patch model, Arino and
Driessche [2] showed that mobility can stabilise or destabilise the disease free
equilibrium. Using numerical simulations for a SIR model with two patches,
Arino et al. [3] showed that by increasing travel rates in both patches, the
disease dies out in all patches, in contrast, small travel rates can help the
disease to persist. Also, using numerical simulations Wang and Zao [25]
showed that travel of individuals can both intensify and reduce the spread of
the disease in all patches. Considering on the one hand a SIR model, D.
Clancy [6] showed that movement of infectious individuals decreases the
spread of the disease. On the other hand, by considering the spread of a
carrier-borne-disease, D. Clancy [7] showed that increasing the movement of
either infectious or susceptible individuals tends to increase the spread of the

infection.

Our contribution opens a different point of view. The question we raise is
the following: by modifying the parameters of a multi-patch SIS epidemic
model, can one make it easier for the inherent random fluctuations to cause
the extinction of an endemic disease?

The paper is organized as follows. In section 2, we describe our multi-
patch SIS stochastic model, and its deterministic law of large numbers limit.
In section 3, we establish the central limit theorem, and we show that the
variance of the proportion of the total population of infectious is equal to the
one of the homogeneous model, if all individuals have the same diffusion

coefficients and the disease transmission and recovery rates are constant over
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the patches. In section 4, we show that our process satisfies the large
deviations principle and using numerical computations we analyze the
influence of the heterogeneity on the quasi-potential. Finally, in section 6 we
study the moderate deviations, and we compute the quasi-potential
numerically, which we compare to that of the homogeneous model.

2. The Stochastic Model and its Law of Large Numbers Limit

The population consists of N individuals, where each individual is located
at one of ¢ geographically distinct patches. Patches represent human
communities in which the disease can diffuse and grow. Individuals in that
population can be classified according to their ability to transmit the disease
to others. Susceptible individuals are those who do not have the disease and
who can get infected. Infectious individuals are those who have been infected
and can transmit the disease to susceptible individuals. Infections are local:
they are the result of an encounter of a susceptible and an infectious
individual, who are located in the same patch. More details on this model can
be found in our previous work (N’zi, Pardoux and Yeo [17]). The
mathematical model is a random Markov epidemic model, solution of a
Poisson process driven stochastic differential equation (SDE), and reads as
follows

t N r N r t
SN = sN0) - % P}nf[zv J' . % dr} + % PJ-’"“(N I ) N (r)er

| . 4 N Vi . t N
- Zk:1 Npgfk(Njo vsajrS; (’")d’"] + Z bt ng‘fk[Njo vsay;Si (r)dr

i N r N r t
V@) =1N(0)+ % P}nf{NJ.O % er + % Pjrec(% Io YjIJN(r)drj
J J

l 1 . t N 0 . ¢ N
_ Zk:l ﬁpﬁ;?k(jvjo Vsajklj (r)dr] + Z be1 Pg?lfk(NJ‘O vSaijj (l")dr

tel0,T)j=1,.., ¢

(2.1)
In this setting
e / 1s the total number of patches;

e N is the total population size;
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. S]N (¢) (resp. I]]-V (t)) denotes the proportion of the total population

which is both susceptible (resp. infectious) and located in patch j at time
N

Aj and y; are nonnegative constants that express the rate of disease

transmission and recovery in patch j, respectively;

vg and v are the diffusion coefficients for susceptible and infectious

individuals, respectively;

for all i, j € {l, ..., ¢}, a;; denotes the rate of migrations from patch i

i
into patch j, with q;; = 0;

e the P;’s are mutually independent standard Poisson processes.

dr | counts the number of transitions of type

Pjnf( J‘ t, SNV (r)

J J QNN . 1N/
0 Si(r)+ I;'(r)
SN 5 IV on the patch j between time 0 and time #;

t
— recovery of an infectious happens at rate yj, so PjreCUOy il JN (r)drj

counts the number of transitions of type I N 5 SN on the patch j between

time 0 and time ¢.

: t
— The term ngl]g,k(Njo vsaijJN(r)drj counts the number of migrations

of susceptible individuals from patch j to %k, if we assume that each

susceptible migrates from j to k at rate vgaj,, and similarly for the

compartment IN, but with vg replaced by vj.

Note that we have li SN@) + IN(@)] = 1, for all t > 0, provided the
_]:1 J J

initial condition satisfies that condition at time ¢ = 0.
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S (t)
)
LetussetZN(t): lm .
SN (t)
M)

We denote by ® the operator defined as follows: for two vectors
u = (u, ug, ..., uy) and v = (vy, vg),

u®v = (uvy, Uva, UgVy, UgVa, ..y UpV], UsVa).

-1 1 1 0
We set b = ( 1 j, by :[ J, e] = [OJ and eg = (J In what follows,

(2N)i denotes the restriction of 2 to the i-th patch and (2V )im denotes

the coordinate of the vector 2V of patch i and of type m, where type m =1

is for susceptible individuals and type m = 2 for infectious individuals, that

. N N N N
is (2%); =8;" and (27);y = I}".
We can rewrite the stochastic model in the aggregated form

(2 ¢
ZN() =2y + % YD e® bmpigy[zv j . Bim(ZN (r))i)drj

=1 m=1
1 4 2 '
1 N
*N z Z(ei -e;)® emPi(m)(NJ.O Vmaii(Z (r))imdr} 2.2)
i=1 m=1

where zy = zN (0), e; 1is the unit vector of the canonical basis of R’, each
Pi(ll) (resp. Pl(zl)) is a Poisson process which counts the infections (resp. the
remissions) in patch i, and the P](L2n)1 are Poisson processes which count the
migrations between patches. For all i € {1, ..., /},

SN ()

, —————— and [5; Ny = 1IN @).
lS]N(t)-l-IJN(t) d BL,Q((Z ())z) Yz[z (t)

B (ZN(r)) =2

In the sequel u” denotes the transpose of the matrix u.
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If we let the total population size N go to infinity, then the stochastic
model converges to a deterministic patch model.

Theorem 2.1 [Law of Large Numbers].

Let 2N denote the solution of the SDEs (2.2). Let us fix an arbitrary
T > 0 and assume that Zy — 2(0) a.s.,as N — «. Then 2N (t) > 2(t) a.s.

locally uniformly in t, where 2(t) = (Sy(t), I,t), So(t),, Io(t), ..., Sy(t), I,(t))"

is the unique solution of the system of ordinary differential equations

dz
=7 (8) = b(2(2)), (2.3)

I 2
where b(Z) = Z Z e ® b, B; m((2);) + z ZV ajjl(ej — €;) ® ¢,,](2);,-

i=1 m=1 i, j=lm=1

This theorem is a particular case of a rather old result. It can be found
e.g. in chapter 11 of Ethier and Kurtz [12] or in Britton and Pardoux [5].
Let R, denote the basic reproduction number of the system (2.3) (the

expected number of secondary cases produced, in a fully susceptible
population, by a typical infected individual during its entire period of
infectiousness). R, allows one to determine whether or not a major epidemic
may start from the initial infection of a small number of individuals. The next
generation matrix approach of Van den Driessche and Watmough [27] is used

to compute Rj.
By setting
A = diag(vj)<j<i» B = diag(vj)<jc, and D = (dj)i<j<q
¢
- Yay  ifi=j
k=1

k#l

aij

Wlth di J =

ifi # j,
we have Ry = p(BV '), where V = v;D - A.

We shall say that an equilibrium point is a disease free equilibrium if in
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that state there is no infected individual, whereas the endemic equilibrium
means that the population contains a positive proportion of infected

individuals.
It is shown in [1] that if Ry <1 the disease free equilibrium is globally
asymptically stable.

The following theorem, which treats the existence and stability of the

endemic equilibrium, is proved in T. Yeo [26].

Theorem 2.2. Assume that vi = vg = v and that the basic reproduction
number R, satisfies Ry > 1. Then the system %(t} = b(2(t)), has a unique

endemic equilibrium 2" which is globally asymptotically stable.
3. Central Limit Theorem

3.1 The convergence result

In this section, we study the fluctuations of the stochastic model around

its deterministic law of large numbers limit by a central limit theorem. To
this end we introduce the rescaled difference between ZN(¢) and Z(t),
namely

IN(SY (1) - $1(2))

IN(I{Y () - L)

wh () = : :

IN (S () - S,(1))
IN(N ) - 1,0)

We denote by =" the weak convergence. We have

Theorem 3.1. [Central Limit Theorem].  Assume that

VN 2y - 2(0)) = W(0), as N — «, where W(0) is a random vector. Then,

as N > o, {WN(t), t >0} = {W(¢), t >0}, for the topology of locally uniform

convergence, where the limit process W(t) satisfies
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W) =
W(°>+Z j & ® (VZB(Z()) - (W())dr + ZZV ajle; ) ® e,
I, j=lm=1
[ <W(r)>mdr+22e ® b0 Br,m (R0 AB) + ZZV ayle; -
=1 m=1 i, j=lm=1

® e[ VB @DIAEC)

where we set P(Z(r)) = (B;,1 (), B, 2(@0N)", and B, BE1 <1,
Jj<t, m =1, 2 are mutually independent standard Brownian motions.

Theorem 3.1 is a special case of Theorem 3.5 of Kurtz [16], and also of
Theorem 2.3.2 of Britton and Pardoux [5]. Since

(i) the function Z > b(2) is of class C', locally uniformly in ¢;

(i1) b(Z) is locally Lipschitz as a function of z, locally uniformly in ¢, the
assumptions of Theorem 2.3.2 of Britton and Pardoux [5] are satisfied. o
Theorem 3.1 gives us an explicit expression for the limit of the

renormalized time-dependent fluctuations around the deterministic multi-
patch model. If the initial condition Z(0) is chosen to be the endemic

equilibrium of the limiting deterministic model, we can derive an explicit
formula for the covariance of our Ornstein-Uhlenbeck process (OUP). From

the last theorem, we can deduce the following Corollary.

Corollary 3.1. Assume that vi =vg =v, Ry >1 and let 2" be the
unique endemic equilibrium of the ODEs (2.3). Assume also that
VN @2y - 2) = W*0), as N - o.

oot
WO =W Y [l ® @pE) - ) ar
i-1
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Z ZJ. vaji(ej —e;) ® en(W¥(r)),,, dr

i, j=lm=1
+ ﬁ ij- \’Bz m((z’ Val_] e - hm dBl(,lrg(’")
=1 m=1

(2
Z Z j Way@ ) (e — ) @ e, JdB2 )
In particular, W*(t) has a normal distribution with covariance matrix

¢ T T
z = etG(z +VJ e tGocT o uG duJetG ,
t 0 0

where G = [g; Gij -Gy, Gg, Gg and G4 are ( x { matrices, and are given
by
;Y
G,(i, j) (S’HI{‘J - Zk ik, Ui=1],
vaj; ifi#j,

+ I
;o 1<j<e
N
Gs = diag| \; J y :
][S; +1; !
1<j<r

2
S L
G4(i,j)= }Li{S*+If’(J _Vzkiiaik_w’ Lfl_]’

i i
vaji, ifi#],

c_ (G G G 0
-q -c, 0 ¢
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STt -
where C; = diag[ A *] Y *] , Cy = diag(,/yjlj )1sjs4
S; + I;

J J N<j<o

and O is the null matrix with dimension ¢ x (¢ —1). C3 = (C3, ..., CS) is a

matrix with dimension ¢ x ((¢{ —1), where each C§ is a block matrix with

dimension (¢ x (¢ — 1), given by

@ @ Va8t JasS; .. \/ﬁ
— Jag,S; 0 0 0
~VasSi 0 0
G = 0 —Jausi 0

0 0 —asSt

o

o O
o O O O

0
~ VagSs 0 0 0 0
Vag2S3 VagsSs J 2453 J ag5S5 ... NagS;
, 0 — agsSs 0 0 0
C 0 0 ~ag,S; 0 0
0 0 0 —VJagsSs . 0

0 0 0 0 e — szss

o

)

)

|
S
A

w
I

0 0 0
0 —vaeS, 0 0 Vag,Ss
0 0 —\a,5S; 0 .. 0
cl - 0 0 0 —VaS; .. 0
0 0 0 0 " 0

0 0 0 0 = ,/af([,l)sz
J anS; J @95y J @387 VauS, . NS
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The matrix Cy is defined like Cy with I" in place of S*.

Proof. From Theorem 3.1, we obtained directly that {W(¢), ¢ > 0}
converges weakly to an OUP {W*(¢), t > 0}, where W" is the process W with
2" in place of z. Given the matrices G and C as in the Corollary 3.1, we note
that W* satisfied the following stochastic differential equation

dW*(t) = GW*@)dt + VvCdB(¢),

with {B(t), ¢t > 0} being a 2¢?-dimensional Brownian motion, which
component are BY B@ 1< i,j<!¢,m=1,2. Following Karatzas &

im?’ T um?

Shreve [14] (section 5.6), the solution of this SDE is
* % t
W*(t) = T, OW*(¢) + I I, rWVCdB(r),
0
where T'is a 2/ x 2¢ matrix, with T'(¢, s) = exp((t — s)G). It then follows that
{(W*(t), t > 0} is a Gaussian process, with mean
E(W(¢)) = T(t, 0)E(W(0)).

If we define Z . Cov(W*(t)), we have that

t T T
Zt: etG(zO+ VJ. e 7G0T G eretG . o
0

Comment 3.1. Although Corollary 3.1 gives us an explicit expression for
the covariance matrix X, it remains difficult to compute this quantity in the
general case. Given values to the parameters of the model, we can compute
e by using a numerical solver. However, there is one particular case where
one can derive a simple explicit formula for this covariance matrix, which
allows us to find an upper bound for the fluctuations around the endemic

equilibrium of the deterministic model. That is the object of the next section.
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3.2 The variance of the proportion of the infectious

subpopulation
We now assume that the disease transmission and recovery rates are
uniform over the patches, that is for all j=1,..., 4, 4; =X and y; =y. We

assume also that infectious and susceptible individuals have the same

diffusion coefficients (v; = vg := v). In this case, we will find an explicit
formula for the asymptotic variance of the fluctuations of the proportion of
infectious individuals in the total population. Replacing C by «/VC, we can

suppress v from the above formulas.

1t
. erms _ _ 1 y y
Now assume that Zy — 2" =(1,1,...,1) ® Z, where Z = 7o 1 —5 )
We extend the operator ® to matrices in the following way. If A and B are two
matrices with dimensions, respectively, m x n and p x g,

allB GlnB
A®B = K o
mnB

B ... a

Am1

We may note in passing that (A ® B)-(C® D)= (A-C)® (B - D), for

every matrices A, B, C and D. With the above notations, we can express

W*(t) in matrix-vector form as

W) = | 0 (1, ® V3b(@) - W'(r) + (D ® I,) - W*(r)jdr

J' I, ® Z(z) dB(r) + I D ® diag(NZ ) - dB(r),

where we used the notations

1
DTy G P L
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-1\ =~ . :
b(Zy, Zy) = [;\m - yZ2)[ 1 j -D is a ¢ x /(¢ —1) matrix formed by ¢

block matrices, each with dimension ¢ x ¢(¢ —1). That is D = (D; D ... D,),

where
Va2 Va3 Va4 Va5 vy
—Jags 0 0 0 0
0 — /013 0 0 0
D]_ = 0 0 — 4014 0 0
0 0 0 — 015 0
0 0 0 0 - ,laM
—Jag; 0 0 0 0
Va1 V@23 Va4 Vags Vagy
0 - ﬂa23 0 0 0
D2 = 0 0 — Q94 0 0
0 0 0 — \1025 0
0 0 0 0 — +\/Q9y
-\Jap 0 0 0 0
0 — Q9 0 0 \VQoy
0 0 — Q3 0 .. 0
~ 0 0 0 — A Qpyq .. 0
D/ = .
0 0 0 0 ‘ 0
0 0 0 0 - ag(f_l)
Van Va2 Va3 V@4 N e(0-1)

B (resp. B ) is the vector of Brownian motion corresponding to the infections
and recoveries (resp. to the migrations). By setting G =1, ® Vzb(fz )
+D®1,, then, we have
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W*(t)=+J.0e(t 9., ®,/Z(z) dB(r)+I = . P ® diag(VZ ) - dB(r).

Since I, ® Vob(Z) and D®I, commute, Then

v = eth@VZb(Z) - eP®2 We have also

I, ® Vob(Z))" = 1, ® (Vob(Z))" and (D ® I,)" = D" ® I, forall n > 0,
¢ Z 4 Z 2

from  which we deduce that e®Vzb(Z) _ I, ® eV2E) gng

ePE2 = oD g I,. Hence the covariance matrix of W*(¢) is given by
Cov(W*(t))
t —
_ (t-r)D (t-r)Vgb(Z)y | 5\ . W
= [ P e ) (e [ @) (1 © Y (7))
H(tID g =) (V2@ g,

| ; (P @ (V) (B ® diagd(@)) - (D ® diagy @)

(D @ (VR EN g

_ ZIte(t—r)D ) e(t—r)DT ® [e(tfr)VZb(i) . Z(Z) ) e(tfr)(VZb(Z))T]dr

j‘(e(m)D D DT DTy @ (VE) | giga(@) . oD THEN ) gy

with » (%) ::%(1%)(_2 —11]

Now, to find the variance of the proportion of the total population of

infectious, we multiply Cov(W*(¢)) from the left by u! and from the right by

u, where u = (1,1, ..., 1) ® es.
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1 1 . 1 1 1
But, since pTl:|=D|: =0, then Dl = etPl | = | 1|, Moreover
1 1 1 1 1
1
DT | =o. Then, we deduce that
1

J‘tuT AL, ot=rD”y
0

® (e(tfr)VZb(Z) - diag(Z)- e(t*r)(Vzb(Z))T )- udr = 0.
Therefore
ul - Cov(W*(t)) - u

i ZJ.tuT D | e(tfr)DT ® [e(t_r)vzb(f) ) Z(Z) ) e(t—r)(Vzb(Z))T] -udr
0

_ 9 I "I [TV 3 (@) el V1. egir.
0

1—vy/A  —y/A

j, and since
-1+y/A  y/x

We have that V,b(Z) = -(\ — y)[

(I—Y/X —Y/KJ2 :(1‘”7‘ _Y/Xj, then

-1+vy/A v/ -1+9/2 v/
oAV2HEZ) _ e_t(x-y)( 1-v/h —v/%j
—1+9/A  y/n)

We then obtain

ul - Cov(W*(t)) - u
D A4 [

P
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t
Y| 90 — y)e 2r-1)(t-7)
A Io (X —y)e dr

— Y -2y
}\(1 e ).

Hence, the variance of the proportion of infectious individuals is close to
% % - e_Qt(X_Y)), when N is large:

We have just proved

Theorem 3.2. Assume that, forall j =1,...,/,L; =y and vi = vg =,
then N times the variance of the proportion of the infectious subpopulation in
the multi-patch SIS model converges, as N tends to +w, towards

Y -2t(h-y)
k(l e ).

Exactly the same limit is obtained for the variance of the same proportion
in the SIS homogeneous model (one patch) with infection rate A and recovery

rate y.

Remark 3.1. (i) From Theorem 3.2, we deduce that, for n > 0 fixed and
any & > 0, there exist ¢ and N large enough such that we have the following

upper bound for the probability of a positive deviation of

WY L0 -1)

4
P WZ(IJN(t)— I;) > n] < exp{— %nz + 8}.

j=1
(i1) The central limit theorem and Theorem 3.2 tell us that
«/NZizl (I]N(t)— I;) converges to a Gaussian process, whose asymptotic

variance can be approximated by y/A for large ¢. This suggests that for large

t, the total numbers of the infectious individuals in the population is

approximately Gaussian with mean NZ j':l I; and standard deviation
NINy/A.
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If N is such that this standard deviation is at least the mean divided by 3,

then it is likely that Z j.: A JN (¢) will hit zero in a time of the order of 1. This

gives a critical population size (the minimum number of people required to
sustain indefinitely an infectious pathogen) roughly of the order of

N, ~ 9y/x

L nor

The choice of 3 is somewhat arbitrary, but if we instead choose 2 the
process will hit 0 fairly quickly with a probability close to 1, and if we choose
4 it seems extremely unlikely that it will hit extinction within e.g. a lifetime,
so 3 seems like a reasonable compromise. The conclusion is that, for a given
infectious disease, given g and 1, the epidemic might stop quickly in a

community of size N < N,, whereas an endemic situation will persist for a
very long time if N> N,.. Remember that at equilibrium, in most diseases,
the proportion of infectious individuals is rather small, hence N, is

reasonably large.
4. Large Deviations Principle and Extinction of an Endemic Disease

For large N, the stochastic model can be seen as a small random
perturbation of the deterministic model. If the starting point of the stochastic
process is close to the endemic equilibrium of the ODE, then its solution will
be close to that equilibrium. But, based upon Large Deviations, the Freidlin-
Wentzell theory tells us not only that sooner or later the small perturbations
of the stochastic process will drive it out of the bassin of attraction of the
stable equilibrium of the ODE, but it gives an estimate of the time it takes for
this to happen. For this reason, we will investigate in this section the Large
Dewviations Principle (LDP) from the law of large numbers, for our SIS model
which is constructed on a finite numbers of patches. We refer to Dembo &
Zeitouni [8] for an introduction to Large Deviation theory, and its application
to Brownian motion driven SDEs. Large deviations for Poisson processes
driven SDEs have been studied in particular by Shwartz and Weiss [23],
Dolgoarshinnykh [9], Pardoux and Samegni [18]. The case of Poisson
processes with vanishing rates is studied in Shwartz and Weiss [24]. In [9],
Dolgoarshinnykh derived the sample path LDP for the SIRS processes from
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that for standard Poisson processes. In these studies the difficulty follows
from the fact that some of the rates in the stochastic process may vanish, and
this makes the estimate delicate since the logarithms of the rates enter the
rate function. Then Kratz and Pardoux [15], Pardoux and Samegni [18] and
Britton and Pardoux [5] also present an approach for continuous time
epidemic models which is adapted to the case where some rates of the process
vanish. Our multi-patch model corresponds to that situation. The main
application of the LDP is to estimate the time needed for the small random
perturbations to drive the system from the stable endemic equilibrium to the
disease free equilibrium.

4.1 Useful notions

We start by stating some useful notions.

e The rates Ek are those which appear in the Poisson processes

SN (@)

P, P2 That is a Bu(2N(t) e {m

zm’

il (@), veayStY ()

viapIN @), i j el .., 0

The vectors hy, € {-1, 0, 1}26 denote the respective jump directions with
jump rates Ek The process Z N can be written as follows
202

20 =2y + | ;b(ZN(r))dr+ thPk(Nf B2 (r))drj

where P, e {P(l) PP 1<i j<t,m=1, 2}.

27 17/

e C([0, T] R?") denotes the set of continuous functions from [0, 7'] into

R%, and AC 7,20 denotes the subset of absolutely continuous functions.

e For ¢ € ACp g/, AC, 5 (¢)  denotes the set of functions
2

c e IN0, T;R?"") such that for all 1<k < (? ctk =0 on the set

. Fu(6(0) = 0} and X0 _ 5727 ke, 1 ae

Advances and Applications in Mathematical Sciences, Volume 23, Issue 3, January 2024



202 T. YEO

e We define the following distance between two elements ¢, y of

D0, TER*) : | o — v |y = 0supT|| o) — w(t)|, where ||-| is the 1-norm
<t<

of R,
The rate function

Considering the stochastic process {ZN ,t >0}, we want to derive an

LDP for the trajectories in ([0, T]; R2 ). To this end we first define a rate

function as follows

inf ifoe ACp o
Ip(9):= {"EAgzz(d’) .
+ o0, otherwise.

where

202

Ir@1e)= [ Yt Buaar
k=1

with  g(x, y) = xlog(x/y)—x +y, where we assume that for all
x > 0, log(x/0) = © and 01log(0/0) = 01og(0) = 0.

The state space in which our process zN (¢) evolves is its interior.
20
E = {z elo1F: ) 2' < 1}
i=1

In what follows 0E denotes the boundary of the set £ and lof]’ its interior.

The LDP proved in Pardoux and Samegni [18] used the following two

assumptions:
Assumption 4.1. There exists Z; € R2’ such that the collection of
mapping @, : E — R?’ defined by ®,(2) =2 + a(Zy — Z), defined for each

0<a<1, is such that 2% = ®,(2) € E, for all Z € E, and moreover for

some 0 <cg <¢; andall Z € E.
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| Z - 2% | < qa, dist (2%, OE) = coq.
Let us define for all @ > 0

B® = {2 € E : dist(Z, 0E) = cpa}, and C, = inf inf B4(2).
1<k<2(® 2eB®

Assumption 4.2 (1) The rate ﬁk are Lipschitz continuous and bounded.

(2) Forany 1 < k < 202, if 2 € E, B(2) > 0.

(3) There exist two constants m;, and ng such that whenever Z € E is
such that B,(Z) < ny, Pp(2%) > Br(2) for all a e (0,my), and for any

1<k <22

(4) There exists a constant p e (0, 1/2) such that lim a log(C,) = 0.
a—0

4.2. Large deviations principle of zN

Here and below we shall use the following notation concerning the initial

condition of ZV. We fix ; € R?' and start 2"V from the point ZV(0) = Zy,

. . U .
where the i-th coordinate 2}y of Zy is given by 2} = [31\1]\7 ], [3'N] denoting

the integer part of 3iN . We shall denote by ZZZVN the process zN starting

from Zy.
Using the fact that the state space E is convex, it is easy to see that

Assumption 4.1 is satisfied, with some Z; € E. Moreover, since the rate

functions Ek() are Lipschitz and bounded, then it is not hard to see that

Assumption 4.2 is also satisfied. Then a combination of Theorem 4 and

Theorem 5 in Pardoux and Samegni [18] yields the following theorem.
Theorem 4.1. For every open set O < ([0, T]; R?")

. 1 N .
limsup—logP(Z, €O)>- inf Ip(¢)
Now N ZN 4=0,9(0)=

Advances and Applications in Mathematical Sciences, Volume 23, Issue 3, January 2024



204 T. YEO

For every closed set F = ([0, T];R?"), and any compact subset K of E

1og sup IP’(Z e F)<—inf inf  Ip(9).

lim sup —
3k 3€K ¢eF, ¢(0)=3

N—ow

N

4.3. Time of extinction in the SIS patch model

Let T4, = inf{t > 0, I"V(t) = 0}. In this subsection we want to estimate

the time taken by the stochastic process {ZN } to leave the bassin of

attraction of the endemic equilibrium. That will be an application of the large

deviations principle. Let

V(z, Z, f )
( T)= ¢.Dr g, ¢1(r01) 2, ¢p=2' @)

V(Z, 2) = inf V(Z, 2, T),
T>0

V, = f V(Z*, 2),
“ ZGE\I{gLI =0} ( )

Following Pardoux and Samegni [18], Theorem 4.1 implies the following

result.
Theorem 4.2. Let Tgc’tﬁ be the extinction time in the SIS model starting

from Zn = [ 3] . Given n > 0, forall 3 € E,

im Pexp{N(V —n)} < Tp? < expiN(V —n)}) = 1, (4.1)
and for N large enough,
exp (N(V ~ )} < BT, ) < exp (N(V ~ )} )

We need to evaluate the quantity V to obtain an approximation of the
extinction time of the epidemic. V can be written in the following form
7 202

V- in j Zg(ct, Be(@(e)dt,

T, 9 ACT 9,:0(0)=2", ¢(T)= oceA2/2(¢)
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and we note that it is the solution of the following optimal control problem

. 22 0T
N{:mz k=1 IO glefs Br(()dt,
2
dg_gt) - ZZZ thk’ (43)
9(0) = 2%, §(T) = 0.

Let us mention that this quasi-potential has been calculated in the case of

the homogeneous model (see Pardoux and Samegni [18]). In that situation,
V =log(Ry) + Ry -1,

which shows that V is a monotone increasing function of R, for R, > 1, and

it vanishes if Ry = 1. But in our case, we cannot find an explicit formula for

V. Hence we use again the optimal control software “Bocop” to compute

numerically an approximation of the value of V, in the case ¢ = 2.

As explained in Britton and Pardoux [5], there is no optimal trajectory

from Z" to 0. Then we start from a point Z* — & (where 8 <1) which is close

to the endemic equilibrium 2. Since we have in mind to compare the
homogeneous and the heterogeneous case, we compute V for a trajectory

from Z* — & to & in both cases.

4.4 Optimal control problem for the computation of Vv

In the case of the homogeneous model, using calculations similar to those
of Britton and Pardoux [5], we find

V(25 -1+ y/x)log (v/A) + (1 - 8)log(l — 8) — 1 + & — (y/A + 8)log(y/A\ + )
+y/h+38.
For 6 =102, %2 =1.5 and vy = 1, we have V ~ 0.0680.

Here, we aim at discussing how the heterogeneity of the environment

influences the value of the quasi-potential V and then the extinction time of
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the epidemic. Hence, we perform a full-scale sensitivity analysis. We consider

the case of two patches, and compute V for some values of the parameters.

Table 1

M| A || ve \Z 5 vV

1.5]| 1.5 1 1 0.0007 | 0.0007 | 0.06388988
1.5 1.5 1 1 0.005 0.005 0.06389509
1.5]| 1.5 1 1 0.02 0.02 0.06390584
1.5 1.5 1 1 0.1 0.1 0.06391835
1.5 1.5 1 1 0.1 0.5 0.06391310
1.5 1.5 1 1 0.1 1 0.06391135
1.5 1.5 1 1 0.1 2 0.06391027
1.5 1.5 1 1 0.1 5 0.06390954
1.5 1.5 1 1 0.5 0.1 0.06392426
1.5 1.5 1 1 0.5 0.5 0.06392421
1.5 1.5 1 1 0.5 1 0.06392396
1.5 1.5 1 1 0.5 2 0.06392346
1.5 1.5 1 1 0.5 5 0.06392374
1.5 1.5 1 1 1 0.1 0.06392546
1.5 1.5 1 1 1 0.5 0.06392552
1.5 1.5 1 1 1 5 0.06392531
1.5 1.5 1 1 2 0.1 0.06392618
1.5 1.5 1 1 2 0.5 0.06392621
1.5 1.5 1 1 2 1 0.06392620
1.5 1.5 1 1 2 5 0.06392616
1.5 1.5 1 1 5 0.1 0.06392664
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1.5 | 1.5 1 1 5 0.5 0.06392667
15| 1.5 1 1 5 1 0.06392266
1.5 | 1.5 1 1 5 2 0.06392668

In Table 1, both patches have the same rate of infections Ay = Lg = 1.5,
and the same rate of recovery y; =7y9 =1. We have the following
observations. Firstly the quasi-potential is very little sensitive to the diffusion
coefficients vg and v;. Secondly, when vg = v; := v, we observe that V is

a monotone increasing function of n, and its values are close to that of the
homogeneous model. Thirdly, when the diffusion coefficient of the infectious

individuals is small (v; <1), we observe that the quasi-potential is a
monotone decreasing function of vg. Finally, for vg fixed, V is a monotone

increasing function of vj.

Table 2

M | ko | vi | Y2 | VI | Vs Vv

15| 15|15 ] 05|01 0.1 | 0.156834979

15|115|15]05 01| 05 | 0.08646118

15| 15|15]05|0.1 2 1 0.06104814

15| 15| 15|05 |0.1 5 ] 0.056511921

15| 15|15 |05 |05 0.1 | 0.13515130

15|115|15 |05 05| 05 | 0.11605712

15| 15| 15| 05|05 1 | 0.09329336

15|115|15]05 05| 2 |0.07916069

15|115|15 |05 |05| 5 |0.06971181

151151505 | 1 | 0.1 |0.12493619

15| 15|15 05| 1 | 05 |0.115643207

15| 15|15 |05 | 1 2 ] 0.08134209
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15| 15|15|05| 1 5 |0.07110322

15| 15|15 05| 2 | 0.1 |0.11931524

15|15 |15| 05| 2 | 05 |0.11201741

15| 15|15 |05 | 2 2 ] 0.08198918

1515|165 |05 | 2 5 | 0.07161757

15| 15|15]05 | 5 | 0.1 |0.11440354

1.5 |15 (15| 05| 5 | 05 | 0.10855991

15| 15|15 |05 | 5 1 | 0.09398299

15| 15|15 |05 | 5 2 ] 0.08133421

15| 15|15 |05 | 5 5 | 0.07155268

In Table 2, both patches have the same rates of infection A = 1.5, and

different rates of recovery. In this case, we remark that the quasi-potential is

a monotone decreasing function of the diffusion coefficients vg. Furthermore,
the quasi-potential is sensitive to the diffusion coefficient vg and vj.

Compared with Table 1, it appears that the value of the quasi-potential is

greater in the case of Table 2 (except the case v; = 0.1). Hence, for the same

rate of infection, if the rate of recovery on both patches is different, that can

increase the time of extinction of the epidemic.

Table 3

Mo ke | v | Y2 | VI Vs Vv

2 1 1 1 0.1 0.1 | 0.13300260

2 1 1 1 0.1 1 0.13948634

2 1 1 1 0.1 2 0.15553404

2 1 1 1 0.1 5 0.15665938

2 1 1 1 0.5 | 0.1 | 0.13094946

2 1 1 1 0.5 | 0.5 | 0.14922713
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2 1 1 1 0.5 1 0.15225154

2 1 1 1 0.5 2 0.19338106

2 1 1 1 1 0.1 | 0.13007143

2 1 1 1 1 0.5 | 0.14769450

2 1 1 1 1 1 0.15044565

2 1 1 1 1 2 0.15187630

2 1 1 1 1 5 0.15275238

2 1 1 1 2 0.1 | 0.12932141

2 1 1 1 2 0.5 | 0.14631146

2 1 1 1 2 5 0.15088231

2 1 1 1 5 0.5 | 0.14511235

2 1 1 1 5 1 0.14743955

2 1 1 1 5 5 0.14928123

In Table 3, A; =2, A9 =1, and the infection rate on both patches is
vy = 1. Here, the values of the quasi-potential is greater than the one of the

homogeneous case. But it is not much sensitive to the diffusion coefficients.
By fixing the diffusion coefficient of the infectious individuals, we observe

that V is a monotone increasing function of vg. Conversely, for vg fixed, we
observe that V is a monotone decreasing function of v; when the diffusion

coefficient of susceptible individuals is small (vg < 1).

Table 4

Mo| Ao 1 Y2 vy Vs Vv

2 1 1.5 05 | 0.1 0.1 | 0.09259574

2 1 1.5 05 | 0.1 0.5 | 0.07566492

2 1 1.5 0.5 0.1 1 0.07143704
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2 1 1.5 0.5 | 0.1 5 0.06741124

2 1 1.5 05 | 0.5 0.1 | 0.09032259

2 1 1.5 0.5 | 0.5 0.5 | 0.06037173

2 1 1.5 05 | 0.5 1 0.07181220

2 1 1.5 0.5 | 0.5 2 0.06866973

2 1 1.5 05 | 0.5 5 0.06664475

2 1 1.5 0.5 1 0.1 | 0.08935810

2 1 1.5 0.5 1 0.5 | 0.07652209

2 1 1.5 0.5 1 1 0.07145629

2 1 1.5 0.5 1 2 0.06828403

2 1 1.5 0.5 2 0.1 | 0.09788083

2 1 1.5 0.5 2 0.5 | 0.07615368

2 1 1.5 0.5 2 2 0.06797799
2 1 1.5 0.5 2 5 0.06585038
2 1 1.5 0.5 5 1 0.07090993
2 1 1.5 0.5 5 2 0.06774671

In Table 4, 4 = 2, Ay =1, y; = 1.5 and yo = 0.5 Here V is sensitive to

the diffusion coefficients. It appears that V is a monotone decreasing

function of vg. Also, by fixing the diffusion coefficient of susceptible

individuals, we see that the quasi-potential is a decreasing function of vj.

Table 5

Mo A | ™M Y2 VI Vg Vv

2 1 0.5 1.5 0.1 0.1 0.219098282

2 1 0.5 1.5 0.1 0.5 0.09113194

2 1 0.5 1.5 0.1 1 0.06445685
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2 1 0.5 1.5 0.1 2 0.04955660
2 1 0.5 1.5 0.1 5 0.03992785
2 1 0.5 1.5 0.5 0.1 0.15502270
2 1 0.5 1.5 0.5 0.5 0.17597830
2 1 0.5 1.5 0.5 1 0.11731207
2 1 0.5 1.5 0.5 2 0.09039406
2 1 0.5 1.5 0.5 5 0.07145280
2 1 0.5 1.5 1 0.1 0.12935284
2 1 0.5 1.5 1 0.5 0.15555805
2 1 0.5 1.5 1 2 0.09851895
2 1 0.5 1.5 1 5 0.07706810

2 1 0.5 1.5 0.1 0.11249079

2 1 0.5 1.5 0.5 0.14521667

2 1 0.5 1.5 1 0.12656503

2 1 0.5 1.5 0.10224187

2 1 0.5 1.5 5 0.07976383

2 1 0.5 1.5 0.1 0.10041725

2 1 0.5 1.5 0.5 0.13399275

Ou | Ot | Ot [N (DN [N | DN | DN
[\

2 1 0.5 1.5 5 0.08095013

In Table 5, only patch 1 is in an endemic situation, contrary to the case in
Table 4. In this case, V is very sensitive to the diffusion coefficients. The
values of the quasi-potential remain greater than those in Table 4 (where
both patches are in an endemic situation). When vy = vg or v; is small
(v <1), V is a monotone decreasing function of vg. Here the quasi-

potential is smaller in the case where the diffusion coefficient of infectious
individuals is small and one of the susceptible individuals is large. It is larger

in the case where both diffusion coefficients are small.
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Table 6

Mol A | mn V2 Vi Vs Vv

25| 0.5 1 1 0.1 | 0.1 | 0.11976635

251 05 1 1 0.1 | 0.5 | 0.06311766

25| 0.5 1 1 0.1 1 0.05007184

251 05 1 1 0.1 2 0.04247088

25| 0.5 1 1 0.1 5 0.03730292

251 05 1 1 0.5 | 0.1 | 0.08896987

25| 0.5 1 1 0.5 | 0.5 | 0.09783242

25| 0.5 1 1 0.5 1 0.08246158

25| 0.5 1 1 0.5 2 0.07144443

25| 0.5 1 1 0.5 5 0.06308287

25| 0.5 1 1 1 0.1 | 0.08283626

25| 0.5 1 1 1 0.5 | 0.09731332

25| 0.5 1 1 1 2 0.07679765

25| 0.5 1 1 1 5 0.06772333

25| 0.5 1 1 2 0.1 | 0.07046595

25| 0.5 1 1 2 0.5 | 0.09433121

25| 0.5 1 1 2 2 0.07912119

25| 0.5 1 1 2 5 0.07006957

25| 0.5 1 1 5 0.1 | 0.06498999

25| 0.5 1 1 5 0.5 | 0.09077776

25| 0.5 1 1 5 1 0.08673071

25| 0.5 1 1 5 2 0.07919208

251 05 1 1 5 5 0.07112742
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In Table 6, both patches have the same recovery rate. Only patch 1 is in
an endemic situation. In this case, we remark that the quasi-potential is very
sensitive to the diffusion coefficients. When v; = vg or the diffusion
coefficient of infectious individuals is small, then V is a monotone decreasing
function of vg. As in the previous case, V is small when the diffusion
coefficient of infectious individuals is small and the one susceptible is large.
But V is large in the case where both diffusion coefficients are small. The
values of V are large in the case of Table 5 than in the case of Table 6.
Furthermore, in many cases of Table 6, the values of V are large than the

ones of the homogeneous case.

Table 7.

Ao| g 71 Yo | VI Vs 1%

25| 05 0.5 1.5 | 0.1 0.1 | 0.27064807

25| 0.5 0.5 1.5 | 0.1 0.5 | 0.09560663

25| 05 0.5 1.5 | 0.1 1 0.06092021

25| 0.5 0.5 1.5 | 0.1 2 0.04227762

25| 05 0.5 1.5 | 0.1 5 0.03037407

25| 05 0.5 1.5 | 0.5 | 0.1 | 0.17253833

25| 05 0.5 1.5 | 0.5 | 0.5 | 0.19499598

25| 05 0.5 1.5 | 0.5 1 0.13866271

25| 05 0.5 1.5 | 0.5 2 0.10025293

25| 05 0.5 1.5 | 0.5 5 0.07247470

25| 05 0.5 1.5 1 0.1 | 0.13055085

25| 05 0.5 1.5 1 0.5 | 0.19169669

25| 05 0.5 1.5 1 5 0.08340398

25| 05 0.5 1.5 2 0.1 | 0.10238341

25| 05 0.5 1.5 2 0.5 | 0.17137155
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25| 05 0.5 1.5 2 1 0.15656419

25| 05 0.5 1.5 2 2 0.12492756

251 05 0.5 1.5 2 5 0.08947044

25| 05 0.5 1.5 5 0.1 | 0.08170288

25| 05 0.5 1.5 5 1 0.14292825

25| 05 0.5 1.5 5 5 0.09285865

In Table 7, V is a monotone decreasing function of vg when v; is small.
Conversely, V is a monotone increasing function of v 7 when vg is large. As

in the previous case, the case where V is the largest is the one where both
diffusion coefficients are small, and it is small in the case where the diffusion
coefficient for susceptible infectious individuals is small and the diffusion
coefficient for susceptible individuals is large. Again in the present case, the
quasi-potential values are much higher than the homogeneous model’s

(except the case vy = 0.1).

Table 8

M Ao | 1| Y2 vy Vs Vv

2.5 05 | 1.5 | 05 0.1 0.1 0.05626799

2.5 05 | 1.5 | 0.5 0.1 0.5 0.05585668

2.5 05 | 1.5 | 0.5 0.1 1 0.05578432

2.5 05 | 1.5 | 0.5 0.1 2 0.05576527

2.5 05 | 1.5 | 0.5 0.1 5 0.05575526

2.5 05 | 1.5 | 0.5 0.5 0.1 0.05775356

2.5 05 | 1.5 | 0.5 0.5 0.5 0.06183417

2.5 05 | 1.5 | 0.5 0.5 1 0.06183159

2.5 05 | 1.5 | 0.5 0.5 2 0.06215810

2.5 05 | 1.5 | 0.5 0.5 5 0.06235621
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25 | 05 | 15| 05 1 0.1 0.06196546

2.5 05 | 1.5 | 0.5 1 0.5 0.06251847

25 | 05 | 15| 05 1 2 0.06287057

2.5 05 | 1.5 | 0.5 2 0.1 0.06202028

25 | 05 | 15| 05 2 0.5 0.06282561

2.5 05 | 1.5 | 0.5 2 1 0.06289555

25 | 05 | 15| 05 2 2 0.06322846

2.5 05 | 1.5 | 0.5 5 0.1 0.06200597

2.5 05 | 1.5 | 0.5 5 0.5 0.06299459

2.5 05 | 1.5 | 05 5 1 0.06310545

2.5 05 | 1.5 | 0.5 5 2 0.06343788

In Table 8, only patch 1 is in an endemic situation. Firstly, we remark

that the quasi-potential is less sensitive to the diffusion coefficients. Secondly,
when the diffusion coefficients are equal, V is a monotone increasing
function of vg Thirdly, V becomes a monotone increasing function of vg
when the diffusion coefficient for infectious individuals becomes large. For
vg fixed, V is a monotone increasing function of v;. Finally, we observe

that in this case, the quasi-potential values are less than the homogeneous
model’s.

From the above observations, it clearly follows that the heterogeneity of
the environment influences the quasi-potential and then the time of
extinction of the epidemic. These results show that spatial heterogeneity and
rates of movement of susceptible and infectious individuals play an important
role in disease persistence and extinction. The movement of susceptible or
infected can enhance or suppress the spread of disease depending on the
heterogeneity and connectivity of the spatial environment. These results have

important implications for disease control.

The extensive tables providing the numerical values of V for many sets

of parameters, although helpful, are not very easy to interpret. Then we
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perform a full-scale sensivity analysis by computing the first and total-order

indices and to determine the effect of the various parameters on V.
5. Sensitivity Analysis

To assess to the sensistivity of A, Ag, V1, Y2, Vg, V7 on V, we need to

write Vv as a function of these parameters, that is
V = f(M, A9, 1> Y2, Vs, V7). We then use the previous values of V

computed with the Bocop software to approximate f by using the multiple

variate regression technique. Next we compute the Sobol indices.
Sobol indices

Sobol sensitivity analysis determines the contribution of each parameter
and their interactions to the overall variance. First-order Sobol indices
measure the direct effect of a parameter on the variance of the model output,
by isolating the contribution of that parameter individually, while keeping
the other parameters fixed at their mean or nominal values. First-order Sobol
indices are useful for identifying parameters that have a significant impact
on the model.

On the other hand, total indices measure the total effect of a parameter,
including its direct effect and its interaction with other parameters. Total
indices are important for understanding how a parameter can influence the
results of the model when the other parameters also vary. Total-order
sensitivity indices take into account both the main, second-order, and higher-
order effects. Sensitivity analysis based on both first-order and total-order
Sobol indices offers a more complete view of the importance of parameters, as
it takes into account both direct effects and interactions. When a parameter
has a high first-order Sobol index and a low total index, this indicates a
situation where the parameter has a significant direct effect on the variance
of the model output, but where its interactions with other parameters have a
limited impact on the overall variability of the results. On the other hand,
when a parameter has a low first-order Sobol index and a high total index,
this indicates a situation where the parameter has a limited direct effect on
the variance of the model output, but where its interactions with other

parameters have a significant impact on the overall variability of the results.

Advances and Applications in Mathematical Sciences, Volume 23, Issue 3, January 2024



MULTI-PATCH STOCHASTIC EPIDEMIC MODEL: FLUCTUATIONS 217

An overview of Sobol-based sensitivity indices can be found in in A. Puy
et al. [22].

Here we use the R package "sensobol" to compute the first order and total

order Sobol indices, and find the following.

Table 1. Sobol-based sensitivity indices.

Parameters | First order indices | Total order indices
A 0,011 0, 221
Ao 0, 072 0, 233
Y1 0,016 0, 032
Y2 0, 072 0, 163
vy 0, 204 0, 335
vg 0, 143 0, 558

This shows that the parameters rank in order of influence on V according

to their total sensitivities as follows: vg, vy, A1, Ao, Y2, V-

This shows that all the coefficients influence the value of V. Moreover,

the quasi-potential is much more influenced by the diffusion coefficients vg

and vy, followed by the infection parameters i; and As.

6. Moderate Deviations and Extinction of an Endemic Disease

Moderate deviations have been studied in Pardoux [20], in the case of
homogeneous epidemic models with a constant flux of susceptibles. In this
work, the author introduces deterministic and stochastic epidemic models in
a homogeneous community, namely the SIS, SIRS and SIR model with
demography. He then studies moderate deviations for such models and
explains how it can be used to predict the time taken for the stochastic
perturbations to stop the epidemic for moderate population sizes. In the case
of the SIS model he made comparison between the central limit theorem,

moderate deviations and large deviations. Here, we follow [20] and derive
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moderate deviations for our process, which models a heterogeneous
community. We want to study moderate deviations at scale a of zN (¢), where
0 <a<1/2. The case o =0 corresponds to the large deviations, and
a = 1/2 to the central limit theorem. Hence moderate deviations describe a

range of fluctuations between those of the central limit theorem and those of
the large deviations. Our results relies essentially upon those in [20], which
can be applied in our case since the assumptions are satisfied. Then, in what

follows we collect several intermediate results which will allow us to conclude
the main results. Since Zizl (Sj(t) + I;(t)) = 1, the system (2.1) can be
reduced to a (2/ —1)-dimensional SDEs, whose solution will be denoted as
2ZN(t). We shall assume that for 1 <i < ¢, the i-th coordinate of Z(¢)
stands for IiN (¢). Let us mention that the two following assumptions are

satisfied by our model:

(H.1) the rate B,(Z) is bounded, 1 < k < 202,

H.2) bec'®R¥LRY¥T), and Vb : R 5 R?7 is bounded and
Lipschitz.

We define 2™V *(t) = N*(2N(t) - 2*), where 2* is the unique endemic
equilibrium of the ODE (2.3). Our goal is to study large deviations of zN.«
at speed ay = N2%71.

6.1. Set-up

In this subsection, we introduce some notations which will be used in the

sequel. First recall that Z(¢), the limit in the law of large numbers, solves the

ODE
2(0) = 20) + | Ot bZ())dr- ©.1)

Let I := (14, ...,1,) be the vector of the proportions of the subpopulation

of infectious individuals. In the case v; = vg, the system (6.1) has a unique
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stable equilibrium point Z* (c.f. Yeo [26]), for which I; >0,V1<j</ Let
Mp,1<k< 262} be mutually independent Poisson random measures on
Rf with mean measure the Lebesgue measure, and let

M,,(dr, du) = My,(dr, du) — drdu, 1 < k < 2¢2. The process Z can be

rewritten as follows
N ¢ N 1 2 t o PBr(Z") __
20 = 2w+ [ 0@+ Y] [ Ry aw 62)
0 N ~ “Jodo

Concerning the initial condition Zy, we fix some Z € R?71 and start the

process ZN from the vector {Z* + ON %2}y, where {Z}y = [NZ]/N.
We set

vV o) = ( j é [Vob(Z* + ON~¢2N “(t)).VZb(Z*)]deJZN P9 (1),

and define

202 3 (2
N _ 1 t o Br(Z7) __ N, o _ oy N
V@) = N;hk | ) | O My(dr, du), and YV (0 = N°YNG)

ZN,OL

Then we can rewrite as follows

ZN o) = N*(ZF + N7}y %) + j Ot Vob(Z9)ZN 4 (ryds + YV (). (6.3)

where yN’“(t) = J;VN’ (r)dr + y *(2).

Let D([0, T}E R*71) denote the set of functions from [0, 7] into R’

which are right continuous and have left limits at any ¢ € [0, T] We equip
D([0, T} R%"!) with the topology of uniform convergence. D([0, 7] R*'~1)*
denote the dual space of D(0, TLR%7Y). For 2 e R let

3 : D([0, T R*71) - D(0, T R**!) be the continuous map which to x
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associates y the solution of the ODE
¢

) =2+ J' Vob(2)y(s)ds + x(0)
0

and for each N 21,3, y :D(0, T} R271) - D0, TER* 1)  be the

continuous map which to x associates ) solution of the ODE
¢
IN(O) = N2+ Ny _o0) + [ Vb2 Wv(s)ds + ()

In what follows, we shall denote by Z]ZVA’/“ the process zN. @ starting
from 2N %0) = N*({2* + N %Z}n_o*). From (6.3), we have that
zZNo Sz,NQN)N’ %). Then from Corollary 4.2.21 in Dembo and Zeitouni [8],

ZN,(X.

large deviations of will follow from whose of YV *. Hence it suffices to

show that JN/N ' % satisfies a Large Deviations Principle. First we need to

define the rate function for our large deviations principle. Let
2 Bu(z*) —
Q) = iil hy, f é f (f)k( )Mk(dr, du), We define the Fenchel-Legendre

transform of

AW) = 5 Bu(@)]

202 ~
Z
S BED[ il o) () O, ) ),
[0,7]
k=1
as
N(9) = sup 0(9) - AW}, ¢ € D0, TFR* ),
ve(d([0, TE R 71))*
where here and below v = (vy, vg, ..., Lgy_1) is a vector of signed measures

2 . :
and (hy, v)(dt) = Y Zl hj,v;(dt), hj, denoting the i-th coordinate of the vector

hy,.
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6.2. The rate function A* and moderate deviations of zV

In this subsection we compute the rate function A" and show that the

o ZN,(X.

process JNJN »* and then also satisfies a Large Deviations Principle. Let

2 ~ ~
us set M = Z?le Br(Z" )y, ® hy,, where

mihy  RERE .. hEREE
- 2,1 2,2 27 20-1
hp &y = | PEPE o PRRE o RRRET e 21 202,
e o RETRET

Lemma 6.1. 9 is a symmetric positive definite matrix.

Proof. For any vector u = (u!, u?, .., u%_l),

202 971201

uI M = Z z Z Br (2 LR uiu™

k=1 i=1 m=1

k
> 0. (6.4)

Now, if u”9u = 0, then (hy, uy =0, for all ke {l, ..., 2[2}. On the one
hand, Vie{l,...,¢ -1} there exists ke {l, ..., 2%2} such that (hy, u) =0
implies u' = u’*’. On the other hand Vie{l,...,2¢ -1}, there exists

kefl, .., 20% such that (h, u) =0 implies u' = u'*!. These two facts
implies that all coordinates of the vector u are equal. Moreover, there exists

some ke {l,..., K} such that (hy, u) =0 implies that #?'"1 = 0. Then

ui:O,Vie{l,...,é—l}. o

Lemma 6.2. For all ¢ < (C2([0, T])** 1, such that $(0) = 0, we have
* _ l ’ =14
N =3[, @0 260
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Proof. Let v = (vy, Vg, ..., Ly,_1) be a vector of signed measure on [0, T']

and ¢  (C2([0, T])?""! such that ¢(0) = 0. First we have
(v, ¢) — A(v) = (v, ¢) - %J.[o o7 r A t{9Mo(dr), v(dt)).

To find A"(¢), we need to take the supremum over the vectors of signed
measures u on [0, T'] of the above functional. The supremum is achieved at a

signed measure u for which the gradient is equal to zero. Computing the
gradient of the functional (v, ¢) — A(v) with respect to the vector of signed

measures u, and equating it to zero yields

o0 = | A Lodr),

:J roO(dr) + ¢ J Mo(dr), V't e [0, T]. (6.5)

[0,¢] (¢, 1]

Now, from (6.5), it follows that ¢'(¢) = J ( ]E)JTU(dr). Furthermore, since
t,T

V) - 60 - [ g
then
T
o) - [ vear=] o,
from which we deduce that 9(v)(dt) = —¢"(¢)dt + ¢'(T)57(dt). M Hence
o(dt) = —ML"()dt + MLy (T)s7(dt).

Substituting this signed measure in the above formula of (v, ¢) — A(v),

implies that, since ¢(0) = 0,
=5[] 60 m N gar s ), ey

— ' -1,n
= [ 4y @O " @)

as claimed. O
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Theorem 6.1. The sequence {SJN’O‘, N > 1} satisfies the large deviations
principle in D([0, T']; R%_l), equipped with the supnorm topology, with the
convex, good rate function A" and with speed ap, in the sense that for any
Borel subset T = D([0, TL R* 1),

— inf A*(¢) < lim inf ay log PN * T
peT’ N=e

< liminf ay log POYYV°% e I') < — inf A*(),
N> oel

denoting by T, T the interior and the closure of the set T, respectively.

Since our multipatch stochastic model satisfies the assumptions (H.1) and
(H.2), then the assumptions of Theorem 4.7 in Pardoux [20] are satisfied. We

then refer the reader to this reference for the proof. o

Finally we can now derive the main result of this section, which is a

consequence of Theorem 6.1 and Corollary 4.2.21 from Dembo and Zeitouni

[8].
Theorem 6.2. The collection of processes {ZN’“(t), 0 <t < T} satisfies a

large deviations principle with speed ay = N2 gnd the good rate function

I 7(0) = (57" (9))

A*[¢<~> 2 Vb 0'¢<s)ds], if 6(0) = 2

+ o, otherwise.

More precisely, for any closed set F < ([0, T']; R2(-1 ),
lim sup ayy log inf PZY'* € F) > — inf I )

For any open set G < D([0, T R*" 1),

lim sup an log inf P(ZN'% € G) > — inf I .
N_mp w log inf. (ZZN € G) s 2.7(0)
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Also, following of Corollary 5.6.15 in Dembo and Zeitouni [8], we deduce

from Theorem 6.2 the following corollary.

Corollary 6.1. Let K denote an arbitrary compact subset of R2/-1

For any closed set F < D([0, T R* 1),

lim sup an log inf P(ZV'% ¢ F)>— inf I .
N_mp w log inf Zyy ) et ek 2,7(9)

For any open set G < D([0, T]; R?'™1),

lim sup ax log inf P(ZV'* ¢ G) > — sup inf T .
N_)Oop w log Inf 2y ) ZeEd’EG 2,7(9)

6.3 Time of extinction of an epidemic

We shall use moderate deviations to estimate the extinction time of an

epidemic. We define

V(Z’v Z, T) = IZ,T(d))y

inf
4, 9(0)=2, ¢(T)=2'

V(z, 2) = inf (2, 2, T),
(2, 2") 71,20( )

= inf V(Z", 2),
¢ &g =y, 15igt) &%)
where a = (a, ag, ..., ay) in the sense a; > 0 forall i =1, ..., /. Denoting by

Zivl %(¢) the i-th component of Ziv » %(t), we define
Tz],va = inf{t > 0, Zévi OL(t) <-a;,1<i< E}.

Theorem 6.3. For a > 0, Z € R%~! such that Z, >a; Vie{l, .., and
any n > 0,
_ 1-20 —
Jim BNV, ) < 2 <N (V —m) =1
—0

and

lim N2* ! log B(TY,) = V,.

N >
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This theorem is a consequence of Corollary 6.1. In fact, as shown in
Britton and Pardoux [5], the main conditions are assumptions (H.1) and
(H.2), that are also satisfied by our multipatch model. Recalling that

zZN9(1) = N*(2N(t) - 2*), we see that TZ]Ya is the time of extinction of the

epidemic if a = N*I*, where I" = (I, ..., I}) is the vector of proportions of

infectious individuals in the various patches at equilibrium.

Roughly speaking, the CLT predicts extinction in time of order 1 in the
case where VNI jI; is of order 1. According to Theorem 6.3, Moderate

Deviations predicts extinction in time of order exp(N'72%V,), if a = N*I" is

of order 1, for some 0 < a <1/2. If none of those is satisfied, then Large

Deviations predicts extinction in time of order exp(NV), see Theorem 4.2.

If one can evaluate the quantity Va, then from Theorem 6.3, we have a

good approximation of the extinction time of the epidemic. Hence, it is

important to evaluate this quantity.
6.4 Optimal control problem for the computation of ‘7(1

In the homogeneous case, the deterministic SIS model can be reduced to a

one dimensional ODE, and Pontryagin’s maximum principle allows to find an
explicit expression for ‘7(1 (see Pardoux [20]). But in our case the dimension is
greater than 1, and Pontryagin’s maximum principle does not solve explicitly
the optimal control problem. However, this quantity can be approximated
numerically with a optimal control software. Here we use the optimal control
software named “Bocop” to approximate the exact values of Va. More
information about the Bocop software can be found on the website

https://www.bocop.org.
Recall that

a

= inf inf inf I, ,(d).
{2, Zig=—0;, 1<i<} T>0 4:¢(0)=2", §(T)=2 2, T

The linearized ODE around the endemic equilibrium reads

2(t) = Vob(Z")2(t) + u(t). We remark that V, is the minimal value of the
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following optimal control problem

T
Min j RO
do(t) _

D = Vb)) + ult)
00)=2", &(T)=2:29 =-a;, Viell,..,

where J(u(t)) = = (M u(t), ult)).

DO =

(6.6)

If the values of the parameters of the model are such that Ry > 1, then

there exists a unique globally asymptotically stable endemic equilibrium. In

such case we can use the “Bocop” software to compute an

V,.

approximation of

Below, we give the value of Va for some parameters in the case of two

patches. For two patches, we have

Sy SiIy
* * * * *
M —— sy + vy |15+ VI3 - o -vi1 +13)
Sl +Il Sl +Il
ST 17 LS| Si +y1 +vs I3
m = - - St + I 0
Sl +Il . .
+V[(1—Sl—12)
. T30 -Sf I - 13)
2
—-vi(I7 + I3) 0 1-8 -1I7
+(yg + vy + vl
and
2
Sy Sy
M| —=2— -1 -vy - = Vs
Sl +11 Sl +Il
Sy Sy >
"
Veb(z") = —7~1[ =Ly -vg 7»1[ =L | —2vg -vs
Sl+11 SlJrIl
2 2
I I I1-8 -If - I
- ko *2 —| +VvI - ko *2 " A —2( 1* 1* 2)7}/27\/[
1-8 -4 1-8 -4 1-8 -4

The endemic equilibrium of the ODEs can be comp

numerical solver. Here, we used the solver "Wolfram Alpha".
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Below, we carry out a sensitivity analysis to highlight the effect of the

model parameters on the quasi-potential Va.

Table 9

Mo ke | v | ve |V Vs a v,

1.5 | 1.5 1 1 0.0007 | 0.0007 | (2,2) | 5.78586

1.5 | 1.5 1 1 0.005 0.005 (2,2) | 1.85745

1.5 | 1.5 1 1 0.1 0.1 (2,2) | 0.32162

Table 10

Mo Ag | v | T2 VI S a v,

2.5 | 0.5 0.5 1.5 0.0007 | 0.0007 | (2,0.001) 20.3172

25105 (05| 15| 0.005 | 0.005 | (2,0.009) 19.9867

25(05(05|15] 0.1 0.1 (2, 0.1) 15.7859

Table 11

M| r | M Vo VI Vs a v,

2 1 0.5 1.5 | 0.0007 | 0.0007 | (2, 0.002) 16.8036

2 1 0.5 1.5 | 0.005 0.005 (2, 0.01) 16.5982

2 1 0.5 1.5 0.1 0.1 (2, 0.2) 13.9578
Table 12
Mo ohe | 1| ove \7i Vs a v,

1.5 | 1.5 1 1 0.0007 | 0.0007 | (2,3) 30.812

1.5 | 1.5 1 1 0.005 0.005 2,3 30.8086

1.5 | 1.5 1 1 0.02 0.02 2, 3) 30.7977

1.5 | 1.5 1 1 0.1 0.1 2,3 30.7577
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Table 13

M| h | n Vo VI & a v,

15| 15|15 | 0.5 0.00001 | 0.00001 | (2,3) | 668.789

1.5115| 15| 0.5 0.0003 0.0003 (2,3) | 1561915

15| 15|15 | 0.5 0.002 0.002 (2,3) | 81.4161

15|15 | 1.5 0.5 0.1 0.1 (2, 3) | 56.8567
Table 14
Mo A | v | ve VI Vs a v,

2 1 0.5 | 1.5 | 0.00001 | 0.00001 | (2, 3) | 31644.7

2 | 1] 05|15/ 00001 | 00001 | (2, 3) | 31691.8

2 1 0.5 | 1.5 | 0.0005 | 0.0005 | (2,3) | 6380.15

2| 105|155 001 0.01 | (2,3) | 367.836
Table 15
Ao A | v | v \7 Vs a v,

2.5 0.5 |05 15| 0.00001 | 0.00001 | (2,3) 86745.8

25105 05|15 | 0.0001 | 0.0001 2,3 86812.8

25|05 (05|15 | 0.0005 | 0.0005 2,3 17421.8

25105 05|15 0.01 0.01 2,3 939.331

In Table 9, both patches have the same rate of infection and recovery, and
are in an endemic situation. We note that the quasi-potential Va is a
monotone decreasing function of v :=v; = vg, for a = (2, 2). Then, in this
case, increasing both the movements of susceptible and infectious individuals
reduces the value of Va. Even if the components of the vector a are not equal,
we note from Table 10 and 11 that V, decreases if we increase both the

movements of susceptible and infectious individuals. Moreover, infection and
recovery rates on the patches are not equal, and only patch 1 is in an endemic
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situation. In Table 12, X; = A9, y; # y9 and both patches are in an endemic

situation. We note that the quasi-potential takes high values compared to the

previous cases, and it is also a monotone decreasing function of v := v; = vg.

In the Tables 13, 14 and 15, only one patch is in an endemic situation. In this

cases, we note that the quasi-potential takes very high values.

These examples show how heterogeneity of the environment and of the
rates of movement of individuals can influence the quasi-potential Va, and

then the time of extinction of the epidemic.
7. Conclusions

In our multi-patch SIS model, it is a fact that sooner or later the random
fluctuations will drive the system to the disease free equilibrium, which is an
absorbing subset for the stochastic Markov model, of which the deterministic
model is the law of large numbers limit. The goal of the present paper was to
analyse the effect of the spatial structure on the stability of the endemic
equilibrium, measured by the time taken by the fluctuations to drive the

system to the disease free equilibrium.

We have shown that the theoretical results (Central Limit Theorem,
Large and Moderate Deviations), which allow to quantify the fluctuations
around the law of large numbers limit, apply to our multi-patch model
similarly as in the case of the homogeneous model. Next, we have tried to
compare the fluctuations in the multi-patch model with those in the
homogeneous model. We were able to show that, if the two parameters of the
stochastic model (the infection and recovery rates) do not differ from one
patch to another, then the variance of the limit in the CLT coincides with that
in the homogeneous model. Similarly, in the Large Deviations result applied
to a two-patch SIS model, the quasi—potential (which is, for large N, close to
the logarithm of the extinction time divided by N), is close to the quasi-
potential of the homogeneous model if both the infection and recovery rates
are constant over the patches, and do not vary much with the rates of
movements. On the contrary, if the recovery rates differ from one patch to the
next, the quasi-potential takes larger values, which are sensitive to the rates
of movements, apparently monotone decreasing as a function of those rates.
In the moderate deviations regime, the quasi-potential is sensitive to the
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rates of movements in all cases (and again monotone decreasing), and it is
significantly larger when the infection and recovery rates differ, in such a
way that the endemic equilibrium would be stable in one, and unstable in the
other patch, would they be isolated.

Those quantitative comparisons should be studied further. In particular,
it would be interesting to know how the variance in the CLT is modified when
the infection and recovery rates vary from one patch to another. Does it
necessarily tend to increase in such situations, compared to the case of
homogeneous parameters? This unfortunately can probably be studied only

numerically, for a few specific sets of parameters.
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