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Abstract 

It is an important challenge to understand how the geographical dispersion of a population 

modifies the evolution of epidemics. In this paper, we consider a multipatch SIS model, and 

analyse the stability of the endemic equilibrium. We consider the classical deterministic model 

as the law of large numbers limit, as the size of the population tends to infinity, of stochastic 

models. Moreover, we investigate the effect of the spatial structure on the time taken by the 

fluctuations of the stochastic model to drive the system from the endemic to the disease free 

equilibrium. Our conclusion is that, if the parameters of the epidemic are homogeneous over the 

various patches, the effect of the fluctuations should be comparable to that of a similar 

homogeneous model. On the contrary, if the parameters of the epidemic model differ from one 

patch to another, then the situation is quite different, and in the cases which we investigated, 

the time taken by the fluctuations to drive the system to the disease free equilibrium is 

significantly larger than in the homogeneous model.  

1. Introduction 

In this paper, we study the fluctuations of a stochastic SIS multi-patch 

model around its law of large numbers limit. Our motivation for this work is 

the following. Provided that the basic reproduction number 0R  is larger than 

1, there will typically exist an endemic equilibrium in the deterministic SIS 

model, which is asymptotically stable. In other words, the deterministic 

model predicts that the epidemic will last for ever. On the other hand, it is 

not hard to show that the stochastic model will reach the disease free 

equilibrium in finite time a.s. That is, the stochastic model predicts that the 
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epidemic will stop soon or later. The larger the size N of the population is, the 

closer the stochastic model is to the deterministic model. Therefore it is 

intuitive that the larger the population size N is the more one has to wait 

until the epidemic goes extinct in the stochastic model. As we will see, this is 

exactly what the mathematics tell us.  

Indeed, the central limit theorem tells us that one observes fluctuations of 

order 21N  in time of order 1. On the other hand, in the endemic 

equilibrium the set of infectious individuals constitute a rather small 

proportion of the total population. If N is not too large so that 21N  is of the 

order of the proportion of infectious individuals in the endemic equilibrium, 

then there is a chance that the epidemic stops quickly. We shall make this 

more precise below. On the other hand, the theory of “small random 

perturbation of dynamical systems” due to Wentzell and Freidlin [13], and 

based upon large deviations theory, predicts that fluctuations of order 1 

appears if we wait a time of the order of  ,exp VN  where V  will be defined 

below. In between those two extremes, the theory of moderate deviations 

allows to predict the time one has to wait if one wants to see a deviation of 

order ,N  for any .210   Those results have been presented in the 

case of the homogeneous model (for the case of the SIS, the SIRS and the SIR 

model with demography) in Pardoux [19]. For the details of the arguments 

exploiting the Central Limit Theorem and Large Deviations, see chapter 4 of 

[5], and for the arguments exploiting moderate deviations, see [20]. 

The present paper considers the SIS multi-patch model. Our goal is 

twofold. First we want to show that the above quoted results which hold for 

homogeneous models, are also valid for the multi-patch SIS model. For a 

more precise description of how the three approaches apply to the extinction 

time of the epidemic, depending upon the size N of the population, see the 

comment after Theorem 6.3 below. 

Second, we show that under certain conditions, the asymptotic variance of 

the limit in the CLT is the same as that in the homogeneous model, the latter 

being known explicitly. And concerning the results exploiting Large and 

Moderate Deviations, we show how to compute numerically the rate V  which 

appears in the exponent. We also show in one particular example with 2 
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patches how V  varies with the parameters of the model. This suggests that if 

some parameters of the model can be modified, it could be useful to choose 

those parameters in order to minimize the rate .V  

In the literature, there are some results which discuss the advantage of 

certain values of certain parameters, based upon an analysis of the 

deterministic model. In particular, considering a two patches deterministic 

SIR model, Bailey [4] showed that if the transmission rate of one patch is 

slightly bigger than 1 and that of the other patch is less than 1, then travel 

can eventually cause the disease extinction in both patches. He also shows 

that if the transmission rate of one patch is significantly greater than 1 and 

that of the other patch is less than 1, then travel can cause the disease to 

remain endemic in both patches. Studying a SIS patch model, Arino and 

Driessche [2] showed that mobility can stabilise or destabilise the disease free 

equilibrium. Using numerical simulations for a SIR model with two patches, 

Arino et al. [3] showed that by increasing travel rates in both patches, the 

disease dies out in all patches, in contrast, small travel rates can help the 

disease to persist. Also, using numerical simulations Wang and Zao [25] 

showed that travel of individuals can both intensify and reduce the spread of 

the disease in all patches. Considering on the one hand a SIR model, D. 

Clancy [6] showed that movement of infectious individuals decreases the 

spread of the disease. On the other hand, by considering the spread of a 

carrier-borne-disease, D. Clancy [7] showed that increasing the movement of 

either infectious or susceptible individuals tends to increase the spread of the 

infection.  

Our contribution opens a different point of view. The question we raise is 

the following: by modifying the parameters of a multi-patch SIS epidemic 

model, can one make it easier for the inherent random fluctuations to cause 

the extinction of an endemic disease?  

The paper is organized as follows. In section 2, we describe our multi-

patch SIS stochastic model, and its deterministic law of large numbers limit. 

In section 3, we establish the central limit theorem, and we show that the 

variance of the proportion of the total population of infectious is equal to the 

one of the homogeneous model, if all individuals have the same diffusion 

coefficients and the disease transmission and recovery rates are constant over 
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the patches. In section 4, we show that our process satisfies the large 

deviations principle and using numerical computations we analyze the 

influence of the heterogeneity on the quasi-potential. Finally, in section 6 we 

study the moderate deviations, and we compute the quasi-potential 

numerically, which we compare to that of the homogeneous model. 

2. The Stochastic Model and its Law of Large Numbers Limit 

The population consists of N individuals, where each individual is located 

at one of   geographically distinct patches. Patches represent human 

communities in which the disease can diffuse and grow. Individuals in that 

population can be classified according to their ability to transmit the disease 

to others. Susceptible individuals are those who do not have the disease and 

who can get infected. Infectious individuals are those who have been infected 

and can transmit the disease to susceptible individuals. Infections are local: 

they are the result of an encounter of a susceptible and an infectious 

individual, who are located in the same patch. More details on this model can 

be found in our previous work (N’zi, Pardoux and Yeo [17]). The 

mathematical model is a random Markov epidemic model, solution of a 

Poisson process driven stochastic differential equation (SDE), and reads as 

follows 
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(2.1) 

In this setting 

   is the total number of patches; 

 N is the total population size; 
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  tSN
j  (resp.  tI N

j  denotes the proportion of the total population 

which is both susceptible (resp. infectious) and located in patch j at time 

t; 

 j  and j  are nonnegative constants that express the rate of disease 

transmission and recovery in patch j, respectively; 

 S  and I  are the diffusion coefficients for susceptible and infectious 

individuals, respectively;  

 for all   ijaji ,,,1,   denotes the rate of migrations from patch i 

into patch j, with ;0iia  

 the jP ’s are mutually independent standard Poisson processes.  

– 
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inf  counts the number of transitions of type 

NN IS   on the patch j between time 0 and time t;  

– recovery of an infectious happens at rate ,j  so   






 
t N
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counts the number of transitions of type NN SI   on the patch j between 

time 0 and time t. 

– The term   






 
t N

jjkS
mig

kjS
drrSaNP

0,,
 counts the number of migrations 

of susceptible individuals from patch j to k, if we assume that each 

susceptible migrates from j to k at rate ,jkSa  and similarly for the 

compartment ,NI  but with S  replaced by .I  

Note that we have      




1
,1

j

N
j

N
j tItS  for all ,0t  provided the 

initial condition satisfies that condition at time .0t  
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We denote by  the operator defined as follows: for two vectors 
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 iN  denotes the restriction of N  to the i-th patch and  im
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the coordinate of the vector N  of patch i and of type m, where type 1m   
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We can rewrite the stochastic model in the aggregated form 
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In the sequel Tu  denotes the transpose of the matrix u. 
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If we let the total population size N go to infinity, then the stochastic 

model converges to a deterministic patch model. 

Theorem 2.1 [Law of Large Numbers]. 

Let N  denote the solution of the SDEs (2.2). Let us fix an arbitrary 

0T  and assume that  0ZZ N  a.s., as .N  Then    ttN Z  a.s. 

locally uniformly in t, where               TtItStItStItSt  ,,,,,,,: 2211Z  

is the unique solution of the system of ordinary differential equations 
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This theorem is a particular case of a rather old result. It can be found 

e.g. in chapter 11 of Ethier and Kurtz [12] or in Britton and Pardoux [5]. 

Let 0R  denote the basic reproduction number of the system (2.3) (the 

expected number of secondary cases produced, in a fully susceptible 

population, by a typical infected individual during its entire period of 

infectiousness). 0R  allows one to determine whether or not a major epidemic 

may start from the initial infection of a small number of individuals. The next 

generation matrix approach of Van den Driessche and Watmough [27] is used 

to compute .0R  

By setting  
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 BVR  where .ADV I   

We shall say that an equilibrium point is a disease free equilibrium if in 
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that state there is no infected individual, whereas the endemic equilibrium 

means that the population contains a positive proportion of infected 

individuals. 

It is shown in [1] that if 10 R  the disease free equilibrium is globally 

asymptically stable. 

The following theorem, which treats the existence and stability of the 

endemic equilibrium, is proved in T. Yeo [26]. 

Theorem 2.2. Assume that  :SI  and that the basic reproduction 

number 0R  satisfies .10 R  Then the system     ,tbt
dt

dz
Z  has a unique 

endemic equilibrium Z  which is globally asymptotically stable. 

3. Central Limit Theorem 

3.1 The convergence result 

In this section, we study the fluctuations of the stochastic model around 

its deterministic law of large numbers limit by a central limit theorem. To 

this end we introduce the rescaled difference between  tN  and  ,tZ  

namely 
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We denote by ”” the weak convergence. We have 

Theorem 3.1. [Central Limit Theorem]. Assume that 

    ,00 WN N  ZZ  as ,N  where  0W  is a random vector. Then, 

as       ,0,0,,  ttWttWN N  for the topology of locally uniform 

convergence, where the limit process  tW  satisfies  
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where we set                 ,, 2,1,
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iiiii rrr ZZZ   and     ,1, 21 iB
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2,1,  mj   are mutually independent standard Brownian motions. 

Theorem 3.1 is a special case of Theorem 3.5 of Kurtz [16], and also of 

Theorem 2.3.2 of Britton and Pardoux [5]. Since   

(i) the function  ZZ b  is of class ,1C  locally uniformly in t;  

(ii)  Zb  is locally Lipschitz as a function of z, locally uniformly in t, the 

assumptions of Theorem 2.3.2 of Britton and Pardoux [5] are satisfied.  □ 

Theorem 3.1 gives us an explicit expression for the limit of the 

renormalized time-dependent fluctuations around the deterministic multi-

patch model. If the initial condition  0Z  is chosen to be the endemic 

equilibrium of the limiting deterministic model, we can derive an explicit 

formula for the covariance of our Ornstein-Uhlenbeck process (OUP). From 

the last theorem, we can deduce the following Corollary. 

Corollary 3.1. Assume that 1,: 0  RSI  and let Z  be the 

unique endemic equilibrium of the ODEs (2.3). Assume also that 
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In particular,  tW   has a normal distribution with covariance matrix 

,
0 0

TT tG

t

t
uGTuGtG edueCCee   








   

where 321
43

21
,, GGG

GG

GG
G 








  and 4G  are    matrices, and are given 

by 

 




























  



,

,,
,

2

1
1

jiifa

jiifa
IS

I
jiG

ji

ik
ik

ii

i
 

,

1

2

2









































j

j

jj

j
j

IS

S
diagG  

,

1

2

3









































j

j

jj

j
j

IS

I
diagG  

 




























  



,,

,,
,

2

4

jiifa

jiifa
IS

S
jiG

ji

ik
iik

ii

i
i  

,
421

321












COCC

OCCC
C  
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where   




























 jjj

j
jj

jj
j IdiagC

IS

IS
diagC 12

1

1 ,  

and O is the null matrix with dimension  .1     3
1
33 ,, CCC   is a 

matrix with dimension  ,1   where each kC3  is a block matrix with 

dimension  ,1   given by 

























































11

115

114

113

112

11115114113112

1
3

0000

0000

0000

0000

0000

Sa

Sa

Sa

Sa

Sa

SaSaSaSaSa

C



















 

























































22

225

224

223

22225224223222

221

2
3

0000

0000

0000

0000

0000

Sa

Sa

Sa

Sa

SaSaSaSaSa

Sa

C



















 

  

 

 

.

0000

00000

0000

0000

000

0000

14321

1

4

3

222

1

3





























































































SaSaSaSaSa

Sa

Sa

Sa

SaSa

Sa

C  
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The matrix 4C  is defined like 3C  with I  in place of .S  

Proof. From Theorem 3.1, we obtained directly that    0, ttW N  

converges weakly to an OUP    ,0,  ttW  where W  is the process W with 

Z  in place of z. Given the matrices G and C as in the Corollary 3.1, we note 

that W  satisfied the following stochastic differential equation  

     ,tCddttGWtdW    

with   0, tt  being a 22 -dimensional Brownian motion, which 

component are     .2,1,,1,, 21
 mjiBB

jimim
  Following Karatzas & 

Shreve [14] (section 5.6), the solution of this SDE is   

           
t

rCdrttWttW
0

,,0,   

where  is a  22   matrix, with     .exp, Gstst   It then follows that 

   0,  ttW  is a Gaussian process, with mean 

       .00,   WttW   

If we define    
t

tWCo ,  we have that 

.
0 0

TT tG

t

t
rGTrGtG edreCCee   








   □ 

Comment 3.1. Although Corollary 3.1 gives us an explicit expression for 

the covariance matrix ,t  it remains difficult to compute this quantity in the 

general case. Given values to the parameters of the model, we can compute 

Ge  by using a numerical solver. However, there is one particular case where 

one can derive a simple explicit formula for this covariance matrix, which 

allows us to find an upper bound for the fluctuations around the endemic 

equilibrium of the deterministic model. That is the object of the next section. 
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3.2 The variance of the proportion of the infectious 

subpopulation 

We now assume that the disease transmission and recovery rates are 

uniform over the patches, that is for all  jj ,,,1   and . j  We 

assume also that infectious and susceptible individuals have the same 

diffusion coefficients  .:  SI  In this case, we will find an explicit 

formula for the asymptotic variance of the fluctuations of the proportion of 

infectious individuals in the total population. Replacing C by ,C  we can 

suppress  from the above formulas. 

Now assume that   ,1,,1,1 ZZZ  



terms

N  where .1,
1




















Z  

We extend the operator  to matrices in the following way. If A and B are two 

matrices with dimensions, respectively, nm   and ,qp   

.:

1

111



















BaBa

BaBa

BA

mnm

n







 

We may note in passing that        ,DBCADCBA   for 

every matrices CBA ,,  and D. With the above notations, we can express 

 tW   in matrix-vector form as  

          
 

t

drrWDrWbtW
0

2 ZZ  

       ,
~~

0 0  
t t

rBddiagDrdB ZZ  

where we used the notations 

   
































































1
1

0

0
1

,
11

11
1:






ZZ diag  and 
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  DZ
ZZ

ZZ
ZZb

~

1

1
, 2

21

21
21 



















  is a  1   matrix formed by   

block matrices, each with dimension  .1   That is  ,
~~~~

21 DDDD   

where 



























































1

15

14

13

12

115141312

1

0000

0000

0000

0000

0000

~

a

a

a

a

a

aaaaa

D  



























































2

25

24

23

225242321

21

2

0000

0000

0000

0000

0000

~

a

a

a

a

aaaaa

a

D  

  

 

 

.

0000

00000

0000

0000

000

0000

~

14321

1

4

3

22

1















































































aaaaa

a

a

a

aa

a

D  

B (resp. B
~

) is the vector of Brownian motion corresponding to the infections 

and recoveries (resp. to the migrations). By setting  ZZb   

,2D  then, we have 
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             .
~~

0 0   
t t

etrt rBddiagDerdBetW ZZ 
  

Since  ZZb  and 2D  commute, Then 

 
.2 


tDbtt eee

ZZ  We have also 

     nn
bb ZZ ZZ     and   ,22   nn

DD  for all ,0n  

from which we deduce that 
   ZZ ZZ btbt

ee


 
 

 and 

.2
2 


 tDtD

ee  Hence the covariance matrix of  tW   is given by 

  tWCo   

              


t
TbrtDrt ee

0
22 ZZ

ZZ   

        dree
TbrtDrt ZZ   

             


t
TbrtDrt diagDdiagDee

0

~~
ZZ

ZZ  

        dree
TbrtDrt ZZ   

                   
t T

brtbrtDrtDrt dreeee
T

0
2

ZZ ZZ Z  

                  
 

t
brtbrtDrtTDrt drediageeDDe

TT

0
,

~~ ZZ ZZ Z  

with   .
11

11
1: 































 

Z  

Now, to find the variance of the proportion of the total population of 

infectious, we multiply   tWCo   from the left by Tu  and from the right by 

u, where   .1,,1,1 2e u  
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But, since ,0

1

1

1

1



































 DDT  then .

1

1

1

1

1

1



















































 tDtD ee
T

 Moreover 

.0

1

1
~


















TD  Then, we deduce that 

     
 

t
DrtTDrtT T

eDDeu
0

~~
 

             .0


druediage
Tbrtbrt ZZ ZZ Z  

Therefore  

   utWCouT    

                  


t T
brtbrtDrtDrtT drueeeeu

T

0
2

ZZ ZZ Z  

             .2
0

22  


t T
brtbrtT dree ee
ZZ ZZ Z  

We have that     ,
1

1












 ZZb  and since 

,
1

1

1

1
2


























 then 

    .
1

1












  tt

ee
ZZb  
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     








t
rt dre

0

22  

  .1 2 



 te  

Hence, the variance of the proportion of infectious individuals is close to 

  ,1
1 2 



 te
N

 when N is large: 

We have just proved 

Theorem 3.2. Assume that, for all  jj ,,,1   and , SI  

then N times the variance of the proportion of the infectious subpopulation in 

the multi–patch SIS model converges, as N tends to ,  towards 

  .1 2 


 te  

Exactly the same limit is obtained for the variance of the same proportion 

in the SIS homogeneous model (one patch) with infection rate  and recovery 

rate .  

Remark 3.1. (i) From Theorem 3.2, we deduce that, for 0  fixed and 

any ,0  there exist t and N large enough such that we have the following 

upper bound for the probability of a positive deviation of 

    




1j j
N
j ItIN  

    .exp 2

1






 


























j

j
N
j ItIN  

(ii) The central limit theorem and Theorem 3.2 tell us that 

    




1j j
N
j ItIN  converges to a Gaussian process, whose asymptotic 

variance can be approximated by   for large t. This suggests that for large 

t, the total numbers of the infectious individuals in the population is 

approximately Gaussian with mean  



1j jIN  and standard deviation 

.N  
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If N is such that this standard deviation is at least the mean divided by 3, 

then it is likely that   



1j

N
j tI  will hit zero in a time of the order of 1. This 

gives a critical population size (the minimum number of people required to 

sustain indefinitely an infectious pathogen) roughly of the order of 

  
.

9
~

2

1 






j j

c
tI

N  

The choice of 3 is somewhat arbitrary, but if we instead choose 2 the 

process will hit 0 fairly quickly with a probability close to 1, and if we choose 

4 it seems extremely unlikely that it will hit extinction within e.g. a lifetime, 

so 3 seems like a reasonable compromise. The conclusion is that, for a given 

infectious disease, given g and l, the epidemic might stop quickly in a 

community of size ,cNN   whereas an endemic situation will persist for a 

very long time if .cNN   Remember that at equilibrium, in most diseases, 

the proportion of infectious individuals is rather small, hence cN  is 

reasonably large. 

4. Large Deviations Principle and Extinction of an Endemic Disease 

For large N, the stochastic model can be seen as a small random 

perturbation of the deterministic model. If the starting point of the stochastic 

process is close to the endemic equilibrium of the ODE, then its solution will 

be close to that equilibrium. But, based upon Large Deviations, the Freidlin-

Wentzell theory tells us not only that sooner or later the small perturbations 

of the stochastic process will drive it out of the bassin of attraction of the 

stable equilibrium of the ODE, but it gives an estimate of the time it takes for 

this to happen. For this reason, we will investigate in this section the Large 

Deviations Principle (LDP) from the law of large numbers, for our SIS model 

which is constructed on a finite numbers of patches. We refer to Dembo & 

Zeitouni [8] for an introduction to Large Deviation theory, and its application 

to Brownian motion driven SDEs. Large deviations for Poisson processes 

driven SDEs have been studied in particular by Shwartz and Weiss [23], 

Dolgoarshinnykh [9], Pardoux and Samegni [18]. The case of Poisson 

processes with vanishing rates is studied in Shwartz and Weiss [24]. In [9], 

Dolgoarshinnykh derived the sample path LDP for the SIRS processes from 
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that for standard Poisson processes. In these studies the difficulty follows 

from the fact that some of the rates in the stochastic process may vanish, and 

this makes the estimate delicate since the logarithms of the rates enter the 

rate function. Then Kratz and Pardoux [15], Pardoux and Samegni [18] and 

Britton and Pardoux [5] also present an approach for continuous time 

epidemic models which is adapted to the case where some rates of the process 

vanish. Our multi-patch model corresponds to that situation. The main 

application of the LDP is to estimate the time needed for the small random 

perturbations to drive the system from the stable endemic equilibrium to the 

disease free equilibrium. 

4.1 Useful notions 

We start by stating some useful notions. 

 The rates k
~

 are those which appear in the Poisson processes 

   ., 21
jmim

PP  That is a    
   

   
   ,,,
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
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    ,,1,,  jitIa N
iijI  

The vectors   2
1,0,1kh  denote the respective jump directions with 

jump rates .
~

k  The process N  can be written as follows 

        ,
~1
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where      .2,1,,1,, 21
 mjiPPP

jimimk   

   2;,0 T denotes the set of continuous functions from  T,0  into 

,2  and 2,T  denotes the subset of absolutely continuous functions. 

 For   222, ,
 T  denotes the set of functions 

 
221 ;,0 
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 We define the following distance between two elements ,  of 

       ,sup:;,0
0

2 ttT
Tt

T




  where   is the 1-norm 

of .2  

The rate function 

Considering the stochastic process  ,0, tN  we want to derive an 

LDP for the trajectories in   .;,0 2 T  To this end we first define a rate 

function as follows 

   










 

otherwise.,

ifinf
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2,
22





T
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TI


 

where 

      
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
T

k

k
k
tT dttcgcI
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~
,|



 

with     ,log, yxyxxyxg   where we assume that for all 

   0log,0 xx  and     .00log000log0   

The state space in which our process  tN  evolves is its interior. 

  .1:1,0

2

1

2














 






i

iE ZZ  

In what follows E  denotes the boundary of the set E and 

E  its interior. 

The LDP proved in Pardoux and Samegni [18] used the following two 

assumptions: 

Assumption 4.1. There exists 2
0 Z  such that the collection of 

mapping  2: Ea  defined by    ,0 ZZZZ  aa  defined for each 

,10  a   is such that   ,Ea
a  ZZ  for all ,EZ  and moreover for 

some 120 cc   and all .EZ  
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  .,, 21 acEdistac aa  ZZZ  

Let us define for all 0a  

   ,,: 2acEdistEBa  ZZ  and  .
~

infinf
221

Z
Z

k
Bk

a
a

C 
 

 

Assumption 4.2 (1) The rate k
~

 are Lipschitz continuous and bounded. 

(2) For any ,21 2 k  if   .0
~

,  ZZ kE


 

(3) There exist two constants ,1  and 2  such that whenever EZ  is 

such that      ZZZ k
a

kk 
~~

,
~

1  for all  ,,0 2a  and for any 

.21 2 k  

(4) There exists a constant  21,0  such that   .0loglim
0




a

a
Ca  

4.2. Large deviations principle of N  

Here and below we shall use the following notation concerning the initial 

condition of .N  We fix 2z  and start N  from the point   ,0 N
N Z  

where the i-th coordinate i
NZ  of NZ  is given by 

 
 N

N

N i
i

i
N Z

Z
,Z  denoting 

the integer part of .NiZ  We shall denote by N

NZ
  the process N  starting 

from .NZ  

Using the fact that the state space E is convex, it is easy to see that 

Assumption 4.1 is satisfied, with some .0


EZ  Moreover, since the rate 

functions  k
~

 are Lipschitz and bounded, then it is not hard to see that 

Assumption 4.2 is also satisfied. Then a combination of Theorem 4 and 

Theorem 5 in Pardoux and Samegni [18] yields the following theorem. 

Theorem 4.1. For every open set   2;,0  TO   

 
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 .inflog
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


T
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N
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IO
N N z
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For every closed set   ,;,0 2 TF  and any compact subset  of E 

 
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 .infinfsuplog
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N N zzz 
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4.3. Time of extinction in the SIS patch model 

Let    .0,0inf  tItT NN
Ext  In this subsection we want to estimate 

the time taken by the stochastic process  N  to leave the bassin of 

attraction of the endemic equilibrium. That will be an application of the large 

deviations principle. Let 

 
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Following Pardoux and Samegni [18], Theorem 4.1 implies the following 

result. 

Theorem 4.2. Let 
z,N

ExtT  be the extinction time in the SIS model starting 

from 
 

.
N

N
N

Z
Z  Given ,0  for all ,Ez  

       ,1expexplim ,

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VNTVN N

Ext
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z   (4.1) 

and for N large enough, 

       .expexp ,
 VNTVN N

Ext
z   (4.2) 

We need to evaluate the quantity V  to obtain an approximation of the 

extinction time of the epidemic. V  can be written in the following form  
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and we note that it is the solution of the following optimal control problem 

   
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  (4.3) 

Let us mention that this quasi-potential has been calculated in the case of 

the homogeneous model (see Pardoux and Samegni [18]). In that situation,  

  ,1log 1
00  RRV  

which shows that V  is a monotone increasing function of 0R  for ,10 R  and 

it vanishes if .10 R  But in our case, we cannot find an explicit formula for 

.V  Hence we use again the optimal control software “Bocop” to compute 

numerically an approximation of the value of ,V  in the case .2  

As explained in Britton and Pardoux [5], there is no optimal trajectory 

from Z  to 0. Then we start from a point Z  (where 1 ) which is close 

to the endemic equilibrium .Z  Since we have in mind to compare the 

homogeneous and the heterogeneous case, we compute V  for a trajectory 

from Z  to  in both cases. 

4.4 Optimal control problem for the computation of V  

In the case of the homogeneous model, using calculations similar to those 

of Britton and Pardoux [5], we find 

            log11log1log12V  

.  

For 5.1,10 2    and ,1  we have .0680.0V  

Here, we aim at discussing how the heterogeneity of the environment 

influences the value of the quasi-potential V  and then the extinction time of 
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the epidemic. Hence, we perform a full-scale sensitivity analysis. We consider 

the case of two patches, and compute V  for some values of the parameters. 

Table 1 

1  2  1  2  I  S  V  

1.5 1.5 1 1 0.0007 0.0007 0.06388988 

1.5 1.5 1 1 0.005 0.005 0.06389509 

1.5 1.5 1 1 0.02 0.02 0.06390584 

1.5 1.5 1 1 0.1 0.1 0.06391835 

1.5 1.5 1 1 0.1 0.5 0.06391310 

1.5 1.5 1 1 0.1 1 0.06391135 

1.5 1.5 1 1 0.1 2 0.06391027 

1.5 1.5 1 1 0.1 5 0.06390954 

1.5 1.5 1 1 0.5 0.1 0.06392426 

1.5 1.5 1 1 0.5 0.5 0.06392421 

1.5 1.5 1 1 0.5 1 0.06392396 

1.5 1.5 1 1 0.5 2 0.06392346 

1.5 1.5 1 1 0.5 5 0.06392374 

1.5 1.5 1 1 1 0.1 0.06392546 

1.5 1.5 1 1 1 0.5 0.06392552 

1.5 1.5 1 1 1 5 0.06392531 

1.5 1.5 1 1 2 0.1 0.06392618 

1.5 1.5 1 1 2 0.5 0.06392621 

1.5 1.5 1 1 2 1 0.06392620 

1.5 1.5 1 1 2 5 0.06392616 

1.5 1.5 1 1 5 0.1 0.06392664 



  MULTI-PATCH STOCHASTIC EPIDEMIC MODEL: FLUCTUATIONS 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 3, January 2024 

207 

1.5 1.5 1 1 5 0.5 0.06392667 

1.5 1.5 1 1 5 1 0.06392266 

1.5 1.5 1 1 5 2 0.06392668 

In Table 1, both patches have the same rate of infections ,5.121   

and the same rate of recovery .121   We have the following 

observations. Firstly the quasi-potential is very little sensitive to the diffusion 

coefficients S  and .I  Secondly, when ,:  IS  we observe that V  is 

a monotone increasing function of n, and its values are close to that of the 

homogeneous model. Thirdly, when the diffusion coefficient of the infectious 

individuals is small  ,1I  we observe that the quasi-potential is a 

monotone decreasing function of .S  Finally, for S  fixed, V  is a monotone 

increasing function of .I  

Table 2 

1  2  1  2  I  S  V  

1.5 1.5 1.5 0.5 0.1 0.1 0.15834979 

1.5 1.5 1.5 0.5 0.1 0.5 0.08646118 

1.5 1.5 1.5 0.5 0.1 2 0.06104814 

1.5 1.5 1.5 0.5 0.1 5 0.05511921 

1.5 1.5 1.5 0.5 0.5 0.1 0.13515130 

1.5 1.5 1.5 0.5 0.5 0.5 0.11605712 

1.5 1.5 1.5 0.5 0.5 1 0.09329336 

1.5 1.5 1.5 0.5 0.5 2 0.07916069 

1.5 1.5 1.5 0.5 0.5 5 0.06971181 

1.5 1.5 1.5 0.5 1 0.1 0.12493619 

1.5 1.5 1.5 0.5 1 0.5 0.11543207 

1.5 1.5 1.5 0.5 1 2 0.08134209 
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1.5 1.5 1.5 0.5 1 5 0.07110322 

1.5 1.5 1.5 0.5 2 0.1 0.11931524 

1.5 1.5 1.5 0.5 2 0.5 0.11201741 

1.5 1.5 1.5 0.5 2 2 0.08198918 

1.5 1.5 1.5 0.5 2 5 0.07161757 

1.5 1.5 1.5 0.5 5 0.1 0.11440354 

1.5 1.5 1.5 0.5 5 0.5 0.10855991 

1.5 1.5 1.5 0.5 5 1 0.09398299 

1.5 1.5 1.5 0.5 5 2 0.08133421 

1.5 1.5 1.5 0.5 5 5 0.07155268 

In Table 2, both patches have the same rates of infection ,5.1  and 

different rates of recovery. In this case, we remark that the quasi-potential is 

a monotone decreasing function of the diffusion coefficients .S  Furthermore, 

the quasi-potential is sensitive to the diffusion coefficient S  and .I  

Compared with Table 1, it appears that the value of the quasi-potential is 

greater in the case of Table 2 (except the case .1.0I  Hence, for the same 

rate of infection, if the rate of recovery on both patches is different, that can 

increase the time of extinction of the epidemic. 

Table 3 

1  2  1  2  I  S  V  

2 1 1 1 0.1 0.1 0.13300260 

2 1 1 1 0.1 1 0.13948634 

2 1 1 1 0.1 2 0.15553404 

2 1 1 1 0.1 5 0.15665938 

2 1 1 1 0.5 0.1 0.13094946 

2 1 1 1 0.5 0.5 0.14922713 
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2 1 1 1 0.5 1 0.15225154 

2 1 1 1 0.5 2 0.19338106 

2 1 1 1 1 0.1 0.13007143 

2 1 1 1 1 0.5 0.14769450 

2 1 1 1 1 1 0.15044565 

2 1 1 1 1 2 0.15187630 

2 1 1 1 1 5 0.15275238 

2 1 1 1 2 0.1 0.12932141 

2 1 1 1 2 0.5 0.14631146 

2 1 1 1 2 5 0.15088231 

2 1 1 1 5 0.5 0.14511235 

2 1 1 1 5 1 0.14743955 

2 1 1 1 5 5 0.14928123 

In Table 3, ,1,2 21   and the infection rate on both patches is 

.1  Here, the values of the quasi-potential is greater than the one of the 

homogeneous case. But it is not much sensitive to the diffusion coefficients. 

By fixing the diffusion coefficient of the infectious individuals, we observe 

that V  is a monotone increasing function of .S  Conversely, for S  fixed, we 

observe that V  is a monotone decreasing function of I  when the diffusion 

coefficient of susceptible individuals is small  .1S   

Table 4 

1  2  1  2  I  S  V  

2 1 1.5 0.5 0.1 0.1 0.09259574 

2 1 1.5 0.5 0.1 0.5 0.07566492 

2 1 1.5 0.5 0.1 1 0.07143704 
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2 1 1.5 0.5 0.1 5 0.06741124 

2 1 1.5 0.5 0.5 0.1 0.09032259 

2 1 1.5 0.5 0.5 0.5 0.06037173 

2 1 1.5 0.5 0.5 1 0.07181220 

2 1 1.5 0.5 0.5 2 0.06866973 

2 1 1.5 0.5 0.5 5 0.06664475 

2 1 1.5 0.5 1 0.1 0.08935810 

2 1 1.5 0.5 1 0.5 0.07652209 

2 1 1.5 0.5 1 1 0.07145629 

2 1 1.5 0.5 1 2 0.06828403 

2 1 1.5 0.5 2 0.1 0.09788083 

2 1 1.5 0.5 2 0.5 0.07615368 

2 1 1.5 0.5 2 2 0.06797799 

2 1 1.5 0.5 2 5 0.06585038 

2 1 1.5 0.5 5 1 0.07090993 

2 1 1.5 0.5 5 2 0.06774671 

In Table 4, 5.1,1,2 121   and 5.02   Here V  is sensitive to 

the diffusion coefficients. It appears that V  is a monotone decreasing 

function of .S  Also, by fixing the diffusion coefficient of susceptible 

individuals, we see that the quasi-potential is a decreasing function of .I  

Table 5 

1  2  1  2  I  S  V  

2 1 0.5 1.5 0.1 0.1 0.219098282 

2 1 0.5 1.5 0.1 0.5 0.09113194 

2 1 0.5 1.5 0.1 1 0.06445685 
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2 1 0.5 1.5 0.1 2 0.04955660 

2 1 0.5 1.5 0.1 5 0.03992785 

2 1 0.5 1.5 0.5 0.1 0.15502270 

2 1 0.5 1.5 0.5 0.5 0.17597830 

2 1 0.5 1.5 0.5 1 0.11731207 

2 1 0.5 1.5 0.5 2 0.09039406 

2 1 0.5 1.5 0.5 5 0.07145280 

2 1 0.5 1.5 1 0.1 0.12935284 

2 1 0.5 1.5 1 0.5 0.15555805 

2 1 0.5 1.5 1 2 0.09851895 

2 1 0.5 1.5 1 5 0.07706810 

2 1 0.5 1.5 2 0.1 0.11249079 

2 1 0.5 1.5 2 0.5 0.14521667 

2 1 0.5 1.5 2 1 0.12656503 

2 1 0.5 1.5 2 2 0.10224187 

2 1 0.5 1.5 2 5 0.07976383 

2 1 0.5 1.5 5 0.1 0.10041725 

2 1 0.5 1.5 5 0.5 0.13399275 

2 1 0.5 1.5 5 5 0.08095013 

In Table 5, only patch 1 is in an endemic situation, contrary to the case in 

Table 4. In this case, V  is very sensitive to the diffusion coefficients. The 

values of the quasi-potential remain greater than those in Table 4 (where 

both patches are in an endemic situation). When SI   or I  is small 

  VI ,1  is a monotone decreasing function of .S  Here the quasi-

potential is smaller in the case where the diffusion coefficient of infectious 

individuals is small and one of the susceptible individuals is large. It is larger 

in the case where both diffusion coefficients are small. 
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Table 6 

1  2  1  2  I  S  V  

2.5 0.5 1 1 0.1 0.1 0.11976635 

2.5 0.5 1 1 0.1 0.5 0.06311766 

2.5 0.5 1 1 0.1 1 0.05007184 

2.5 0.5 1 1 0.1 2 0.04247088 

2.5 0.5 1 1 0.1 5 0.03730292 

2.5 0.5 1 1 0.5 0.1 0.08896987 

2.5 0.5 1 1 0.5 0.5 0.09783242 

2.5 0.5 1 1 0.5 1 0.08246158 

2.5 0.5 1 1 0.5 2 0.07144443 

2.5 0.5 1 1 0.5 5 0.06308287 

2.5 0.5 1 1 1 0.1 0.08283626 

2.5 0.5 1 1 1 0.5 0.09731332 

2.5 0.5 1 1 1 2 0.07679765 

2.5 0.5 1 1 1 5 0.06772333 

2.5 0.5 1 1 2 0.1 0.07046595 

2.5 0.5 1 1 2 0.5 0.09433121 

2.5 0.5 1 1 2 2 0.07912119 

2.5 0.5 1 1 2 5 0.07006957 

2.5 0.5 1 1 5 0.1 0.06498999 

2.5 0.5 1 1 5 0.5 0.09077776 

2.5 0.5 1 1 5 1 0.08673071 

2.5 0.5 1 1 5 2 0.07919208 

2.5 0.5 1 1 5 5 0.07112742 



  MULTI-PATCH STOCHASTIC EPIDEMIC MODEL: FLUCTUATIONS 

Advances and Applications in Mathematical Sciences, Volume 23, Issue 3, January 2024 

213 

In Table 6, both patches have the same recovery rate. Only patch 1 is in 

an endemic situation. In this case, we remark that the quasi-potential is very 

sensitive to the diffusion coefficients. When SI   or the diffusion 

coefficient of infectious individuals is small, then V  is a monotone decreasing 

function of .S  As in the previous case, V  is small when the diffusion 

coefficient of infectious individuals is small and the one susceptible is large. 

But V  is large in the case where both diffusion coefficients are small. The 

values of V  are large in the case of Table 5 than in the case of Table 6. 

Furthermore, in many cases of Table 6, the values of V  are large than the 

ones of the homogeneous case. 

Table 7. 

1  2  1  2  I  S  V  

2.5 0.5 0.5 1.5 0.1 0.1 0.27064807 

2.5 0.5 0.5 1.5 0.1 0.5 0.09560663 

2.5 0.5 0.5 1.5 0.1 1 0.06092021 

2.5 0.5 0.5 1.5 0.1 2 0.04227762 

2.5 0.5 0.5 1.5 0.1 5 0.03037407 

2.5 0.5 0.5 1.5 0.5 0.1 0.17253833 

2.5 0.5 0.5 1.5 0.5 0.5 0.19499598 

2.5 0.5 0.5 1.5 0.5 1 0.13866271 

2.5 0.5 0.5 1.5 0.5 2 0.10025293 

2.5 0.5 0.5 1.5 0.5 5 0.07247470 

2.5 0.5 0.5 1.5 1 0.1 0.13055085 

2.5 0.5 0.5 1.5 1 0.5 0.19169669 

2.5 0.5 0.5 1.5 1 5 0.08340398 

2.5 0.5 0.5 1.5 2 0.1 0.10238341 

2.5 0.5 0.5 1.5 2 0.5 0.17137155 
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2.5 0.5 0.5 1.5 2 1 0.15656419 

2.5 0.5 0.5 1.5 2 2 0.12492756 

2.5 0.5 0.5 1.5 2 5 0.08947044 

2.5 0.5 0.5 1.5 5 0.1 0.08170288 

2.5 0.5 0.5 1.5 5 1 0.14292825 

2.5 0.5 0.5 1.5 5 5 0.09285865 

In Table 7, V  is a monotone decreasing function of S  when I  is small. 

Conversely, V  is a monotone increasing function of I  when S  is large. As 

in the previous case, the case where V  is the largest is the one where both 

diffusion coefficients are small, and it is small in the case where the diffusion 

coefficient for susceptible infectious individuals is small and the diffusion 

coefficient for susceptible individuals is large. Again in the present case, the 

quasi-potential values are much higher than the homogeneous model’s 

(except the case .1.0I  

Table 8 

1  2  1  2  I  S  V  

2.5 0.5 1.5 0.5 0.1 0.1 0.05626799 

2.5 0.5 1.5 0.5 0.1 0.5 0.05585668 

2.5 0.5 1.5 0.5 0.1 1 0.05578432 

2.5 0.5 1.5 0.5 0.1 2 0.05576527 

2.5 0.5 1.5 0.5 0.1 5 0.05575526 

2.5 0.5 1.5 0.5 0.5 0.1 0.05775356 

2.5 0.5 1.5 0.5 0.5 0.5 0.06183417 

2.5 0.5 1.5 0.5 0.5 1 0.06183159 

2.5 0.5 1.5 0.5 0.5 2 0.06215810 

2.5 0.5 1.5 0.5 0.5 5 0.06235621 
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2.5 0.5 1.5 0.5 1 0.1 0.06196546 

2.5 0.5 1.5 0.5 1 0.5 0.06251847 

2.5 0.5 1.5 0.5 1 2 0.06287057 

2.5 0.5 1.5 0.5 2 0.1 0.06202028 

2.5 0.5 1.5 0.5 2 0.5 0.06282561 

2.5 0.5 1.5 0.5 2 1 0.06289555 

2.5 0.5 1.5 0.5 2 2 0.06322846 

2.5 0.5 1.5 0.5 5 0.1 0.06200597 

2.5 0.5 1.5 0.5 5 0.5 0.06299459 

2.5 0.5 1.5 0.5 5 1 0.06310545 

2.5 0.5 1.5 0.5 5 2 0.06343788 

In Table 8, only patch 1 is in an endemic situation. Firstly, we remark 

that the quasi-potential is less sensitive to the diffusion coefficients. Secondly, 

when the diffusion coefficients are equal, V  is a monotone increasing 

function of S  Thirdly, V  becomes a monotone increasing function of S  

when the diffusion coefficient for infectious individuals becomes large. For 

S  fixed, V  is a monotone increasing function of .I  Finally, we observe 

that in this case, the quasi-potential values are less than the homogeneous 

model’s. 

From the above observations, it clearly follows that the heterogeneity of 

the environment influences the quasi-potential and then the time of 

extinction of the epidemic. These results show that spatial heterogeneity and 

rates of movement of susceptible and infectious individuals play an important 

role in disease persistence and extinction. The movement of susceptible or 

infected can enhance or suppress the spread of disease depending on the 

heterogeneity and connectivity of the spatial environment. These results have 

important implications for disease control. 

The extensive tables providing the numerical values of V  for many sets 

of parameters, although helpful, are not very easy to interpret. Then we 
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perform a full-scale sensivity analysis by computing the first and total-order 

indices and to determine the effect of the various parameters on .V  

5. Sensitivity Analysis 

To assess to the sensistivity of IS  ,,,,, 2121  on ,V  we need to 

write V  as a function of these parameters, that is 

 .,,,,, 2121 ISfV   We then use the previous values of V  

computed with the Bocop software to approximate f by using the multiple 

variate regression technique. Next we compute the Sobol indices. 

Sobol indices 

Sobol sensitivity analysis determines the contribution of each parameter 

and their interactions to the overall variance. First-order Sobol indices 

measure the direct effect of a parameter on the variance of the model output, 

by isolating the contribution of that parameter individually, while keeping 

the other parameters fixed at their mean or nominal values. First-order Sobol 

indices are useful for identifying parameters that have a significant impact 

on the model.  

On the other hand, total indices measure the total effect of a parameter, 

including its direct effect and its interaction with other parameters. Total 

indices are important for understanding how a parameter can influence the 

results of the model when the other parameters also vary. Total-order 

sensitivity indices take into account both the main, second-order, and higher-

order effects. Sensitivity analysis based on both first-order and total-order 

Sobol indices offers a more complete view of the importance of parameters, as 

it takes into account both direct effects and interactions. When a parameter 

has a high first-order Sobol index and a low total index, this indicates a 

situation where the parameter has a significant direct effect on the variance 

of the model output, but where its interactions with other parameters have a 

limited impact on the overall variability of the results. On the other hand, 

when a parameter has a low first-order Sobol index and a high total index, 

this indicates a situation where the parameter has a limited direct effect on 

the variance of the model output, but where its interactions with other 

parameters have a significant impact on the overall variability of the results. 
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An overview of Sobol-based sensitivity indices can be found in in A. Puy 

et al. [22].  

Here we use the R package "sensobol" to compute the first order and total 

order Sobol indices, and find the following. 

Table 1. Sobol-based sensitivity indices. 

Parameters First order indices Total order indices 

1  0, 011 0, 221 

2  0, 072 0, 233 

1  0, 016 0, 032 

2  0, 072 0, 163 

I  0, 204 0, 335 

S  0, 143 0, 558 

This shows that the parameters rank in order of influence on V according 

to their total sensitivities as follows: .,,,,, 1221  IS  

This shows that all the coefficients influence the value of .V  Moreover, 

the quasi-potential is much more influenced by the diffusion coefficients S  

and ,I  followed by the infection parameters 1  and .2  

6. Moderate Deviations and Extinction of an Endemic Disease 

Moderate deviations have been studied in Pardoux [20], in the case of 

homogeneous epidemic models with a constant flux of susceptibles. In this 

work, the author introduces deterministic and stochastic epidemic models in 

a homogeneous community, namely the SIS, SIRS and SIR model with 

demography. He then studies moderate deviations for such models and 

explains how it can be used to predict the time taken for the stochastic 

perturbations to stop the epidemic for moderate population sizes. In the case 

of the SIS model he made comparison between the central limit theorem, 

moderate deviations and large deviations. Here, we follow [20] and derive 
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moderate deviations for our process, which models a heterogeneous 

community. We want to study moderate deviations at scale a of  ,tN  where 

.210   The case 0  corresponds to the large deviations, and 

21  to the central limit theorem. Hence moderate deviations describe a 

range of fluctuations between those of the central limit theorem and those of 

the large deviations. Our results relies essentially upon those in [20], which 

can be applied in our case since the assumptions are satisfied. Then, in what 

follows we collect several intermediate results which will allow us to conclude 

the main results. Since      




1
,1

j jj tItS  the system (2.1) can be 

reduced to a  12  -dimensional SDEs, whose solution will be denoted as 

 .tN  We shall assume that for ,1  i  the i-th coordinate of  tN  

stands for  .tI N
i  Let us mention that the two following assumptions are 

satisfied by our model: 

(H.1) the rate  Zk
~

 is bounded, ;21 2 k  

(H.2)  ,; 12121   b  and 1212:    bZ  is bounded and 

Lipschitz. 

We define      ,,   ZtNt NN   where Z  is the unique endemic 

equilibrium of the ODE (2.3). Our goal is to study large deviations of ,N  

at speed .12  NaN  

6.1. Set-up 

In this subsection, we introduce some notations which will be used in the 

sequel. First recall that  ,tZ  the limit in the law of large numbers, solves the 

ODE 

      
t

drrbt
0

.0 ZZZ   (6.1) 

Let   III ,,: 1  be the vector of the proportions of the subpopulation 

of infectious individuals. In the case ,SI   the system (6.1) has a unique 
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stable equilibrium point Z  (c.f. Yeo [26]), for which .1,0  jI j  Let 

 221,  kk  be mutually independent Poisson random measures on 

2
R  with mean measure the Lebesgue measure, and let 

    .21,,, 2 kdrdududrdudr kk   The process N  can be 

rewritten as follows 

      
 

.,
1

22

1
0

~

00
  


 





k

t

kk

t
N

N
N k

dudrh
N

rbt
Z

Z    (6.2) 

Concerning the initial condition ,NZ  we fix some 12  Z  and start the 

process N  from the vector   ,NN ZZ    where     .: NNN ZZ   

We set 

         ,,

0

,, tdbtNbtV N
t

NN 








   ZZ ZZ  

and define 

   
 

  


 



22

1
0

~

0
,,

1


k

t

kk
N k

dudrh
N

t
Z

  and    ., tNt NN     

Then we can rewrite ,N  as follows 

          



  

t
NN

N
N tdsrbNNt

0

,,, .
~
 ZZZ ZZ   (6.3) 

where      
 

t NNN tdrrVt
0

,,, .  

Let   12;,0  T  denote the set of functions from  T,0  into 12   

which are right continuous and have left limits at any  .,0 Tt   We equip 

  12;,0  T  with the topology of uniform convergence.   12;,0  T  

denote the dual space of   .;,0 12  T  For ,12  Z  let 

     1212 ;,0;,0:     TTZF  be the continuous map which to x 
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associates y the solution of the ODE 

         
t

txdssybty
0

ZZ Z  

and for each      1212
, ;,0;,0:,1     TTN NZF  be the 

continuous map which to x associates N  solution of the ODE 

            





t

NNN txdssbNNt
0

. ZZZ ZZ  

In what follows, we shall denote by ,N

NZ
  the process ,N  starting 

from     .0,


  ZZZ N
N NN  From (6.3), we have that 

 .
~ ,

,
,   N

N
N  ZF  Then from Corollary 4.2.21 in Dembo and Zeitouni [8], 

large deviations of ,N  will follow from whose of .
~ , N  Hence it suffices to 

show that ,~N  satisfies a Large Deviations Principle. First we need to 

define the rate function for our large deviations principle. Let 

   
 

  

 


22

1 0

~

0
,,:



k

t

kk
k

dudrhtQ
Z
  We define the Fenchel-Legendre 

transform of 

     2

2
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where here and below  1221 ,,,    is a vector of signed measures 

and     

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i
ki

i
kk hdthdth  denoting the i-th coordinate of the vector 
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6.2. The rate function   and moderate deviations of N  

In this subsection we compute the rate function   and show that the 

process ,~N  and then also ,N  satisfies a Large Deviations Principle. Let 

us set   

 
22

1
,
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k kkk hhZM  where 
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hh  for all .2,,1 2k  

Lemma 6.1. M is a symmetric positive definite matrix. 

Proof. For any vector  ,,,, 1221   uuuu  
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kk uhZ  

.0  (6.4) 

Now, if ,0uuTM  then ,0, uhk  for all  .2,,1 2k  On the one 

hand,  1,,1  i  there exists  22,,1 k  such that 0, uhk  

implies .ii uu    On the other hand  ,12,,1  i  there exists 

 22,,1 k  such that 0, uhk  implies .1 ii uu  These two facts 

implies that all coordinates of the vector u are equal. Moreover, there exists 

some  Kk ,,1   such that 0, uhk  implies that .012 u  Then 

 .1,,1,0  iui  □ 

Lemma 6.2. For all     ,,0
122 




T  such that   ,00   we have 

     
   
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Proof. Let  1221 ,,,    be a vector of signed measure on  T,0  

and     122 ,0





T  such that   .00   First we have 

     
  

2,0
.,

2

1
,,

T
dtdrtr M  

To find  ,  we need to take the supremum over the vectors of signed 

measures u on  T,0  of the above functional. The supremum is achieved at a 

signed measure u for which the gradient is equal to zero. Computing the 

gradient of the functional  ,  with respect to the vector of signed 

measures u, and equating it to zero yields 
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from which we deduce that          .dtTdttdt TM  M Hence 
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Substituting this signed measure in the above formula of  ,,   
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as claimed. □ 
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Theorem 6.1. The sequence  1,
~ ,  NN  satisfies the large deviations 

principle in   ,;,0 12  T  equipped with the supnorm topology, with the 

convex, good rate function   and with speed ,Na  in the sense that for any 

Borel subset   ,;,0 12  TD  

    
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loginfliminf N

N
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



N
N

N
a   

denoting by ,


 the interior and the closure of the set , respectively. 

Since our multipatch stochastic model satisfies the assumptions (H.1) and 

(H.2), then the assumptions of Theorem 4.7 in Pardoux [20] are satisfied. We 

then refer the reader to this reference for the proof.  □ 

Finally we can now derive the main result of this section, which is a 

consequence of Theorem 6.1 and Corollary 4.2.21 from Dembo and Zeitouni 

[8]. 

Theorem 6.2. The collection of processes    TttN  0,,  satisfies a 

large deviations principle with speed 12  NaN  and the good rate function 
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More precisely, for any closed set   ,;,0 12   TF  
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For any open set   ,;,0 12   TG  
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Also, following of Corollary 5.6.15 in Dembo and Zeitouni [8], we deduce 

from Theorem 6.2 the following corollary. 

Corollary 6.1. Let  denote an arbitrary compact subset of 12   

For any closed set   ,;,0 12   TF  
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For any open set   ,;,0 12   TG  
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6.3 Time of extinction of an epidemic 

We shall use moderate deviations to estimate the extinction time of an 

epidemic. We define 
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where   aaaa ,,, 21  in the sense 0ia  for all .,,1 i  Denoting by 

 tN
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  the i-th component of  ,, tN
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Theorem 6.3. For 12,0  Za  such that   ,,1 iii aZ  and 
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This theorem is a consequence of Corollary 6.1. In fact, as shown in 

Britton and Pardoux [5], the main conditions are assumptions (H.1) and 

(H.2), that are also satisfied by our multipatch model. Recalling that 

     ,,   ztNtZ NN   we see that NT a,Z  is the time of extinction of the 

epidemic if , INa  where     III ,,1  is the vector of proportions of 

infectious individuals in the various patches at equilibrium. 

Roughly speaking, the CLT predicts extinction in time of order 1 in the 

case where  jjIN  is of order 1. According to Theorem 6.3, Moderate 

Deviations predicts extinction in time of order  ,exp 21
aVN   if  INa  is 

of order 1, for some .210   If none of those is satisfied, then Large 

Deviations predicts extinction in time of order  ,exp VN  see Theorem 4.2. 

If one can evaluate the quantity ,aV  then from Theorem 6.3, we have a 

good approximation of the extinction time of the epidemic. Hence, it is 

important to evaluate this quantity. 

6.4 Optimal control problem for the computation of aV  

In the homogeneous case, the deterministic SIS model can be reduced to a 

one dimensional ODE, and Pontryagin’s maximum principle allows to find an 

explicit expression for aV  (see Pardoux [20]). But in our case the dimension is 

greater than 1, and Pontryagin’s maximum principle does not solve explicitly 

the optimal control problem. However, this quantity can be approximated 

numerically with a optimal control software. Here we use the optimal control 

software named “Bocop” to approximate the exact values of .aV  More 

information about the Bocop software can be found on the website 

https://www.bocop.org. 

Recall that 

     
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The linearized ODE around the endemic equilibrium reads 

       .tutbt   ZZZ Z
  We remark that aV  is the minimal value of the 
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following optimal control problem 
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If the values of the parameters of the model are such that ,10 R  then 

there exists a unique globally asymptotically stable endemic equilibrium. In 

such case we can use the “Bocop” software to compute an approximation of 
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The endemic equilibrium of the ODEs can be computed by using a 

numerical solver. Here, we used the solver "Wolfram Alpha". 
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Below, we carry out a sensitivity analysis to highlight the effect of the 

model parameters on the quasi-potential .aV  

Table 9 

1  2  1  2  I  S  a  
aV  

1.5 1.5 1 1 0.0007 0.0007 (2, 2) 5.78586 

1.5 1.5 1 1 0.005 0.005 (2, 2) 1.85745 

1.5 1.5 1 1 0.1 0.1 (2, 2) 0.32162 

Table 10 

1  2  1  2  I  S  a  
aV  

2.5 0.5 0.5 1.5 0.0007 0.0007 (2, 0.001) 20.3172 

2.5 0.5 0.5 1.5 0.005 0.005 (2, 0.009) 19.9867 

2.5 0.5 0.5 1.5 0.1 0.1 (2, 0.1) 15.7859 

Table 11 

1  2  1  2  I  S  a  
aV  

2 1 0.5 1.5 0.0007 0.0007 (2, 0.002) 16.8036 

2 1 0.5 1.5 0.005 0.005 (2, 0.01) 16.5982 

2 1 0.5 1.5 0.1 0.1 (2, 0.2) 13.9578 

Table 12 

1  2  1  2  I  S  a  
aV  

1.5 1.5 1 1 0.0007 0.0007 (2, 3) 30.812 

1.5 1.5 1 1 0.005 0.005 (2, 3) 30.8086 

1.5 1.5 1 1 0.02 0.02 (2, 3) 30.7977 

1.5 1.5 1 1 0.1 0.1 (2, 3) 30.7577 
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Table 13 

1  2  1  2  I  S  a  
aV  

1.5 1.5 1.5 0.5 0.00001 0.00001 (2, 3) 668.789 

1.5 1.5 1.5 0.5 0.0003 0.0003 (2, 3) 151.915 

1.5 1.5 1.5 0.5 0.002 0.002 (2, 3) 81.4161 

1.5 1.5 1.5 0.5 0.1 0.1 (2, 3) 56.8567 

Table 14 

1  2  1  2  I  S  a  
aV  

2 1 0.5 1.5 0.00001 0.00001 (2, 3) 31644.7 

2 1 0.5 1.5 0.0001 0.0001 (2, 3) 31691.8 

2 1 0.5 1.5 0.0005 0.0005 (2, 3) 6380.15 

2 1 0.5 1.5 0.01 0.01 (2, 3) 367.836 

Table 15 

1  2  1  2  I  S  a  
aV  

2.5 0.5 0.5 1.5 0.00001 0.00001 (2, 3) 86745.8 

2.5 0.5 0.5 1.5 0.0001 0.0001 (2, 3) 86812.8 

2.5 0.5 0.5 1.5 0.0005 0.0005 (2, 3) 17421.8 

2.5 0.5 0.5 1.5 0.01 0.01 (2, 3) 939.331 

In Table 9, both patches have the same rate of infection and recovery, and 

are in an endemic situation. We note that the quasi-potential aV  is a 

monotone decreasing function of ,: 1 S  for  .2,2a  Then, in this 

case, increasing both the movements of susceptible and infectious individuals 

reduces the value of .aV  Even if the components of the vector a are not equal, 

we note from Table 10 and 11 that aV  decreases if we increase both the 

movements of susceptible and infectious individuals. Moreover, infection and 

recovery rates on the patches are not equal, and only patch 1 is in an endemic 
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situation. In Table 12, 2121 ,   and both patches are in an endemic 

situation. We note that the quasi-potential takes high values compared to the 

previous cases, and it is also a monotone decreasing function of .: 1 S  

In the Tables 13, 14 and 15, only one patch is in an endemic situation. In this 

cases, we note that the quasi-potential takes very high values. 

These examples show how heterogeneity of the environment and of the 

rates of movement of individuals can influence the quasi-potential ,aV  and 

then the time of extinction of the epidemic. 

7. Conclusions 

In our multi-patch SIS model, it is a fact that sooner or later the random 

fluctuations will drive the system to the disease free equilibrium, which is an 

absorbing subset for the stochastic Markov model, of which the deterministic 

model is the law of large numbers limit. The goal of the present paper was to 

analyse the effect of the spatial structure on the stability of the endemic 

equilibrium, measured by the time taken by the fluctuations to drive the 

system to the disease free equilibrium. 

We have shown that the theoretical results (Central Limit Theorem, 

Large and Moderate Deviations), which allow to quantify the fluctuations 

around the law of large numbers limit, apply to our multi-patch model 

similarly as in the case of the homogeneous model. Next, we have tried to 

compare the fluctuations in the multi-patch model with those in the 

homogeneous model. We were able to show that, if the two parameters of the 

stochastic model (the infection and recovery rates) do not differ from one 

patch to another, then the variance of the limit in the CLT coincides with that 

in the homogeneous model. Similarly, in the Large Deviations result applied 

to a two-patch SIS model, the quasi–potential (which is, for large N, close to 

the logarithm of the extinction time divided by N), is close to the quasi-

potential of the homogeneous model if both the infection and recovery rates 

are constant over the patches, and do not vary much with the rates of 

movements. On the contrary, if the recovery rates differ from one patch to the 

next, the quasi-potential takes larger values, which are sensitive to the rates 

of movements, apparently monotone decreasing as a function of those rates. 

In the moderate deviations regime, the quasi-potential is sensitive to the 
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rates of movements in all cases (and again monotone decreasing), and it is 

significantly larger when the infection and recovery rates differ, in such a 

way that the endemic equilibrium would be stable in one, and unstable in the 

other patch, would they be isolated. 

Those quantitative comparisons should be studied further. In particular, 

it would be interesting to know how the variance in the CLT is modified when 

the infection and recovery rates vary from one patch to another. Does it 

necessarily tend to increase in such situations, compared to the case of 

homogeneous parameters? This unfortunately can probably be studied only 

numerically, for a few specific sets of parameters. 
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